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1. INTRODUCTION

1I.. Historical overview and EPL

A slowdown in the rate of growth of computing power available from single pro-

cessor, a dramatic decrease in the hardware cost and a everlasting need for faster com-

putations especially for many real-time application have inspired both users and

developers of large scale computers to investigate the feasibility of parallel computa-

tion [1].

With the advent of highly parallel computers need for efficient, user-friendly com-

pilers that help to design parallel computations became apparent. In the traditional

sequential control flow model (often referred to as Von Neumann), there is a single

thread of control which is passed from instruction to instruction [2]. In the parallel

control flow model, special parallel control operators such as FORK and JOIN are

used to explicitly specify parallelism. These operators allow more than one thread of

control to be active at any instant and provide means for synchronizing these threads

of control.

Parallel processing of a sequential algorithm can be achieved in a program expli-
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citly or implicitly. For explicit parallelism. user. muil b ptnv-ted *%t pn ts, Im't

constructs that permit them to express parallehsumn in a pwopgm Thpv t %runitt

is endowed with responsibility for effcicieto o( prop-am r.wava W rtlerfatw ,

has to know the system reasonably well (epetv4lTh the at we " the cv"-stittt

system) and (s)he has to decide which ponwnt othe we pshcm aM th rM tb Pvs

lel. How well the underlying panelehsm hat beet r tpku'sd b c i 4 wl*% t t4

knowledge, skill, and judgement of the proranmirw hit. is u mc ,.41rt

Since parallel computers are mostly used b wwoumts, wW w4" m O a'wSc,

different fields as a tool for their compuww it st * he*tv com fl p

It is much more desirable that the compil he 0 4t wuw dw untOWvitt

parallelism in an algorithrn. The proVpnm is th* tw,,d from Ow v,"cwiti a ofh

indicating and extracting parUebum Thus. ow Vw,&Jkj tnsmow c* hr vie

efficiently. To achieve that the pmpwnmol t' -#,1 tu% to %#" *Atum rnashljI

the user's to specify his/iher ulgwnthn uittw*A pmK-o ,t# o ? ,r coc 'i C t l

necessary data dependencies will be irpsKit. Mw" ; ,) o w -et 0wn'% %,rt S

ning user's specification. the cowpier e<gnlrei pt.4* c£iro Arm% Then I' ,he

optimization stage, the compiler wlectA that crwmrA iv u~m ,h cT-Awe OW m-WI t-VI,

lel code (the largest number of program utniti -. t c r) - it, rwvjwi Rii4 C11, 0"

selected control flow and other cOWemtw"' x €irwzm, pen ,,
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x aga -w-svtaym to 4mg program statements and groups them into processes.

%Mg t tw Vmgc~m i utus o peoxtarn statements) may be independent during

6ta. ,st.2 L. -na otroe ptxcit does not affect the other) and thus can be run

¢ matv .*&&a"em Iwtxeww% Generating these independent processes, the

4war pp om vnpk pwni, %hich include communication and synchroniza-

ls petion- ag &ar to tocu e these processes concurrently.

ts ,oscmt. oa ol the pvsern day concurrent programming languages (such as

AV^. 4tsw..wawm At104. Concurrent Pascal. etc. ) use explicit parallelism, so they can

no to vtated am wwifne)y. apar from being inefficient for programs written by

To kcwn descnbes the design of some major parts of the compiler meant to

e wwd in hilMy psnilel computing environment. The compiled language supports

imtacit poaulleht ad is appropriately called Equational Programming Language or

EM.. To eiuact rmarnwn parallelism in a user specification, the language is made

n *mtedtuJal. i.e. the statements in a specification does not have any linear ordering.

Shuffling te setiments in a specification does not change its meaning. The advantage

of this feature is that the compiler is given the opportunity to find out the sequential

dependencies among the statements (or more appropriately, equations) and hence the

pnesses that can be run concurrently, without any directive being provided by the
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user regarding the parallelization. If this feature is absent then different ways of coding

the algorithm in a language will have different efficiency, delegating the responsibility

of selecting the particular coding for the most efficient program to the user. The pres-

ence of this feature also has the added advantage of giving the opportunity to minimize

the synchronization overhead, since the compiler can estimate the run-time of different

processes that are to be run concurrently and adjust the processes accordingly.

1.2. EPL system

EPL system is a language translator for a non-procedural equational programming

language. In a program written in EPL, there is no linear ordering among the equa-

tions, (i.e., a program obtained by permuting the statements of the original program

produces the same object code on compilation). Therefore the EPL translator differs

greatly in organization and scope from a conventional compiler. There are several

phases of translation in the EPL system. The figure below shows the block diagram

for the entire EPL system. The Lexical analyzer, Parser and the Dimension propaga-

tion phases are described in details in this document.

The EPL system may be divided into the following phases of translation:

0
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LEXCAL ANALYZER:

Like other conventional language translators EPL also uses lexical analyzer to

break down the character stream in the user's program into a strean of suitable tokens

that are to be used by the parser. The parser and the lexical analyzer works interac-

tively. The parser calls the lexical analyzer repeatedly. Each time lexical analyzer is

called, it absorbs some characters from the source program and returns a token to the

parser along with a value of the token. if any [7].

PARSER:

The parser checks whether the tokens returned by the lexica analyzer fa rms a

sentence that belongs to the grammar of EPL (3. 71. If the sentnem does no belong t

the EPL grammar then the parser reports syntax error the first tme t dewects it during

parsing, and then it does error recovery and proceeds to paw the rem of the progrsm

The parser tries to report as many errors as possible (so that the uwr does not hsve to

compile his/her program repeatedly) and at the %arme tie tr'es to keep rmdundani erinpo

message to the minimum. However lake other corpilerm . it mght pve re6umdant

error messages. Some syntax errors may be hidden ty otherm

If no syntax error is found. the parser acepts the pnram and tids the tvhr,1

table, equation trees and other related glo--l da;a -iuvm, th chat acwrne' the pr,
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Unlike other language translators EPL does extensive post-parsing analysis before

the actual code is generated. These analysis is divided into the following translation

phases

EXTENSIVE SEMANTIC CHECKING:

Fig. I shows that there are three semantic checking phases in the system placed

in three strategic points in the system. The greatly increased semantic checking is

caused by the features of the language, which allows data structures and indices in the

user's program to be left undeclared (their type will be established by data type propa-

gation phase -- any contradiction in the implied data type for an undeclared data struc-

ture or index will be detected at this point by semantic phase [II). The flexibility in

the language to allow undeclared data items increases the need for detailed analysis of

the declared data items to ensure that they are consistent and complete (that is data

types for all undeclared data items can be established by analyzing the data types of

the declared data items) [5].

DATA TYPE PROPAGATION:

As mentioned earlier, EPL allows the user to leave some data items undeclared in

his/her program provided they are used, if they are done consistently, i.e., the data

types of the undeclared data items can be inferred from the declared data items by



-8-

analyzing the equations where they are used. Data type propagation does this propa-

gation of data types from the fields of the declared data structures in the user's pro-

gram to the undeclared data items in the program in a meaningful and consistent

manner. Semantic error will be reported by the semantic checking phase if analysis

finds that the declared variables are incomplete (that is they are not sufficient to deter-

mine the data types of all other undeclared data items) and/or incompatible [5, 61.

ARRAY GRAPH CONSTRUCTION:

Array graph is one of the most important structure in the EPL system. As men-

tioned before, an EPL program does not contain any information regarding the sequen-

tial dependencies of its equations. Though some equations can be executed con-

currently, in general not all the equations can be executed at the same time. The exe-

cution of those equations which use a variable in the right hand side of the equation

that is being defined by some other equation has to wait till the defining equation is

executed. After analyzing the equations of a program array graph is constructed, which

represents the sequential dependencies among different data structures and equations in

the program which must be enforced for a meaningful computation [4,6].

DIMENSION PROPAGATION:

An important feature of EPL is that it allows the user to drop subscripting expres-
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smons saey Kim* the aumt Mbl ICAArT 1CUC%%- the Ub" tmm the r.vuUtne

job of coesuady wntua the u i lpcn CA P Mr" t " hea &W) i biou1 unr-

standale. penrnUM him 10 cmVxte IK mom on ft ba&C &loQntm gha, feature

also becomes vey useful in many wawttoh xpplbcaonb wi v e owM (mata pro-

cedun need to be performed using ddfmnn nmber at dauwesaon& In dww caue the

user needs to change only the dimenuons ol the dacbred data twmb and Ohe contents

of the files. He/she does not need to make any chate n the aolnmthm (charclnd

by the equations) itself. Dunension propaptuon phase of the Ianue u-andauon fill

in the dropped dimensions by propaung dmenstons sumag from the fields of fthe

input and output file structures. The propagation is based on the analysts of the equa-

tions with the help of the array graph (6].

RANGE PROPAGATION:

To obtain independence from user specified sequentiality (which may be rnzsle d-

ing for parallelizaion purpose) in an EPL program, EPL grammar does not have many

conventional programming language constructs. One of the most important of such

programming language construct that is absent in EPL is the iterative loop. Since any

nontrivial algorithm has parts of its computation to be done iteratively, EPL must

have some means to specify iteration, protecting non-procedurality at the same time.

Ranged EPL data items are used to share values which are defined inside a loop, at
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each iteration. For more flexibility and convenience of the user, EPL allows the user

to owit the upper bound of these ranges. Complex analysis of the user's declared

stuctural ranges and run-time defined structural and subscript ranges is needed in

order to determine meaningful and consistent bounding values for the ranges, The

ranges ae also the bounding values for the loops in the generated code [6].

OF IMIZATION:

Mos compilers wnen today includes an optimization phase to make the object

code o efficient (in terms of time or space or both, depending on particular

eavonmsrnlI in which they am proposed to be used). However in a very few of them

the opdtimzation phase is as important as in the EPL system. There is no explicit itera-

tom consruct in the EPL pamnmar. Even a single valued data item that are defined in

an iteraton in a conventional programming language, is equivalently defined as a

ranged data item in a corresponding EPL program. This range is equal to the number

of iftrations - to accumulate the value of the data item at each iteration, since all or

some of them may be used by some other equations in the program. Even a small

EPL program that computes through a large number of implicit iterations would

require a large memory. Therefore an optimization stage is performed to reduce the

dimensionality of multidimensional structures that do not require any referencing of the

past values (or at least do not refer to values distant from the current value) [6, 31.
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SCHEDULING:

Unless the algorithm itself is written in a parallel form , the algorithm can be

divided into sub-computations. At execution time, some of the sub-computations can

be executed concurrently. Scheduling determines the groups of units (or processes) in

an EPL program that can be run concurrently ( by separate processors ), and schedules

these groups. Since array graph contains the dependence relationship among the asser-

tion and data nodes, it is the major data structure used for scheduling [6].

1.3. Project Overview

1.3.1. Project Scope

The system components that have been designed and implemented in this project

include

1. Lexical Analyzer
2. Syntax Analyzer
3. Dimensionality Propagation
4. Scheduler
5. Optimization

The other components of the system are already built or in the process of being

built by other members of the research group. The work for the scheduler is nearing

completion and the work for the optimization phase is about to be started.
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1.3.2. Computing Environment

The EPL system components described in this document are implemented in the

Sequent Balance 21000 computer at the department of Computer Science in Rensselaer

Polytechnic Institute running the Dynix operating system. The system is written in the

programming language C. Currently the objective of the system is to translate from

EPL source code to C object code using FORK and JOIN statements in the produced

object code for parallel execution. System libraries used in the implementation are

<stdio.h>, <strings.h>, <ctype.h> and <sys/types.h>. The code is written with portabil-

ity to other UNIX based systems in mind.

2. Global Data Structures

2.1. Symbol Table



-13-

2.1.1. Formal description of the symbol table

The symbol table is organized as a hash table having 101 buckets. The hash func-

tion used for this purpose is described later in the algorithm "hash". Each entry in the

symbol table has 14 fields. They are described as follows

1. *symbol._name

This is a pointer to the character string for the symbol for which this entry is

created. A symbol here may be a variable name (see ref. I for legal variable

names), a real or integer constant or some reserved words like LAST, RANGE.

ADDRESS, PRESENT, CASE, etc. A symbol table entry is always created for

the symbol PROCESS. Since PROCESS is a reserved word in equational pro-

gramming language, it can not appear in the user's program to denote a data

item. All the data structures in the user's program that does not belong to any file

structure are made part of an intermediate file structure. The name of this file is

PROCESS. In equational programming language same identifier may denote

different variables (or data items). Typical example is when the same identifier is

used to denote data items belonging to different file structures. So in the symbol

table there might be more than one entry for the same symbol in the same bucket

(all belong to different files).
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it me gw ry at (v a W&lk. pup. or record of a declared data structure in

u. tn's pmeom lthe ti*e field conuuns a pointer to the parent of this data item

to that do& wvae If ui the usit, pogam uxme daa structure is found that

don m bekig o my Ik taw'u then the paUt field of the topmost data item

in t"a dam suauctae conr , a ponter to the symbol table entry for PROCESS

mW !s in made the nrm sb4lng of the Laut child added to this intermediate file

If thet is no possible patent for the symbol for which the entry is created

then this eld contains NULL Symbols representing file name. subscripts,

inteer or real constant do not have any parent

3. old child

This field contains a pointer to the oldest child of the symbol table entry. The

oldest child is the data item that comes just after the data item declaration in the

user's program for which the entry is created and is preceded by a larger integer

than the integer that precedes the data item for which the entry is created.

If there is no child then this field is NULL.



- 15 -

4. *sibling

This field contains a pointer to the next sibling. Next sibling is the data item that

is in the same level as the data item for which the entry is created and comes just

after it in the user's program declaration. If there is no 'next sibling' and the

entry is not for a subscript then it is NULL.

In the case of subscript this field contains a pointer to the head of the link list of

all the pointers to the symbol table entry corresponding to the names listed in the

nlist of subscript or sublinear subscript description. In other words this is the

linked list of all the pointers to the symbol table entry corresponding to the data

items that can be subscripted using the subscript for which the entry is created.
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5. typeofuse

This field contains the 'type o( uw" nwoma ot th wymbol Th6 ietld may

contain any value beween 0and IS deperndg on t type o( ut of t sybol

in the user's proaurn. Followtng the It of al pow tW type of usies ajong

with their codes:

0 - The entry represents an identifier that has not been declared . has
not been used as the target of an asscron. and has not appeared

in an indexing expression.
I Subscript
2 Field

3 Group
4 Record
5 File
6 Last

7 Present
8 Range

9 The entry is for an undeclared identifier that has been used in a
subscript expression, but never used as a target of an assertion.

10= The entry is for an undeclared data name that has been found to be
the target of an assertion.

11= Function
12- Address

14- Constant
15= CASE

There is no ordinary variable. For example, when a variable is declared as:

int : just a name;
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the corresponding symbol table entry contains 2 indicating it as a field (of some

interim file, the name of which is PROCESS).

6. file_type

If the entry is created for a data item then this field indicates the type of file in

which the symbol for which the entry is created belongs. In equational program-

ming language there are four different types of files. Since during parsing we

might come across the name of a data item before it is declared in a file structure

(if it is declared at all), we need a code to indicate that the data item has not

been declared in a file structure as yet.

0 = Sequential
1 = Directed
2 = Display
3 = Port
4 = not known yet

For ordinary variable this field is 0, i.e., by default the file PROCESS is sequen-

tial.

If the symbol table entry is for the symbol "LAST" or "RANGE" then this

field contains the number of repetition of "LAST." or effective number of repeti-

tion of "RANGE." (if "LAST." is preceded by "RANGE." then the "LAST."s are

reckoned as "RANGE.") in the user's program.

.,. i.. =-m i i ll i mm rlhlrtnamr-- • .. .
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7. type

This field contains the data type information for the fields. There are eight

different data types possible in the equational programming language. For char-

acter declarations the size of a variable might not be known when the symbol

table entry is created (sometimes, the size is not even at the end of parsing) . For

this case code 8 is used. If the number of character is known to be "n" then this

field contains "-n". As before when the entry is created for a data item, its data

type may be unknown, which requires to use a code (here "0" is used ) to indi-

cate "yet unknown". If the entry is not for a "field" of a declared file structure in

the user's program then also this field will contain "0".

-n = character

0 = yet unknown
I = short integer

2 = integer
3 = long integer

4 = real
5 = double (real)

6 = quad (real)

7 = logical

8 = char (no size is known yet).

8. ioflags
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[71 case below: This is a sub-field of 1 bit and it is set to 1 for those

record entries for which there is a CASE entry found as a

descendent of that record.

[8] string: This is also a sub-field of 1 bit and it is set to indicate that

the entry is for a character string.

[9] dim_proc: This one bit sub-field is set to 1 only when the dimen-

sionality for the entry has been correctly established.

Needed for dimensionality propagation. At the end of

parsing this bit is set only for those symbol table entries

which represents a data item that belongs to an input or

output file structure. After dimensionality propagation

phase, this bit is set for all the symbol table entries of all

the data items for which correct dimensionality can be

established by propagating dimensionality from those

fields which belongs to some input or output file struc-

tures.

[101 undef: This one bit sub-field is set to "1" whenever a file is

created before its definition is found in the user's program.

This field is useful in semantic error reporting in the cases
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when "IN=>OUT" or "OUT=>IN" is found in the

definition of the file.

[I I] bck.ptr: This pointer is set to 1 to indicate that there is a RANGE

or LAST (or both) symbol table entry which has its

otheryointers field pointing to this entry. This information

is primarily used in the dimension propagation phase of

the EPL system to reduce the searching time.

9. *range

This field contains a pointer to the range definition block in the RANGE table

that corresponds to the ranges of the symbol for which this entry is made. The

ranges of the symbol are found in the declaration of the data item for which the

entry is created. The data structure for range definition block is described later.

If the symbol is not subscripted then this field will contain NULL.

10. dimensionality

During parsing the symbol table entries of a data item that belongs to a file struc-

ture partially correct dimensionality value in this field (the value of the dimen-

sionality at this time is the value found in the user's program) . At the end of
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parsing this field contains the correct dimensionality for data items that belongs to

some input or output file structure. The correct dimensionality is the sum of all

the declared dimensionalities ( as found in the user's program ) of all the ances-

tors, and the declared dimensionality of the data item under consideration.

After the dimensionality propagation phase of the EPL system, the dimensionality

is propagated to all the other possible data items (on the basis of analysis of the

array graph ) starting from the data items for which dimensionality has been

correctly established during parsing, specifically the fields that belongs to input or

output file structure.

11. *other_pointers

The other_pointers field is used to store the following information:

a. If the symbol table entry is created for a sublinear subscript then this

field contains a pointer to the expression tree corresponding to the

expression that is associated with the declaration of the sublinear sub-

script.

b. If the symbol table entry is created for a field of a display file then

this field contains a pointer to a character string which is the format of
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the data item as found in the declaration of the data item in the user's

program.

c. If the symbol table entry is created for a symbol like "LAST",

"RANGE", "ADDRESS", or "PRESENT" then this field contains a

pointer to the symbol table entry which they qualify, which maybe an

entry for a field or group or in some cases which may be another entry

for "RANGE" or "ADDRESS".

d. If the symbol table entry is created for the symbol "CASE" (a new

such entry is created, each in the same bucket, every time "CASE" is

found in the declaration of a file in the user's program), this field con-

tains a pointer to the Rec case structure (described later) which keeps

track of all the different substructures mentioned in the user's pro-

gram. In this case the interpretation of the record structure of the file

depends on the value of some expression (this expression appears after

the keyword "WHEN" in the user's program and is evaluated each

time a new record is retrieved from the disk storage. It determines

which of the many alternative structures , each of which is preceded

by "WHEN" or "OTHER", are to be considered for breaking up the

chunk of information contained in the record being processed).
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12. *ptr.arr.gr

This field contains a pointer to the node in the array graph that corresponds to the

symbol whose entry is made. During the parsing this field contains NULL. This

field is appropriately filled when the array graph is built. This field is needed to

link the array graph nodes with the symbol table entries.

13. *vbl

This field contains a pointer to the structure "variable-block" (in the rangetab

file). During parsing this field is not filled. This field is used in the Range propa-

gation phase of the EPL system.

14. *next

This field points to the next entry in the bucket. If there is no more entry in the

bucket then it is NULL.
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2.1.2. Remarks

The symbol table contains all the symbols that appears in the compiled EPL pro-

gram. The symbols might be variable names, string constants, integer or real constants.

Each variable that belongs to DIRECT or PORT files will have two entries in the sym-

bol table, if the file in which they belong to are declared both as input and output files.

In that case one entry will have the original variable name and the other will have that

name prefixed by "OUT" . The I/O information of these two will differ. The entry

with the original variable name will have isinput flag set to 1 and is-output flag set to

0. For the other entry (the one prefixed by "OUT") the is-input will contain 0 and

is-output flag will contain 1. Both of these entries will be found in the same bucket,

on the basis of the original variable name.

For variables that has been prefixed by ADDRESS, RANGE, LAST or PRESENT

a new entry of the same name is created in the symbol table which has its

other_pointers field pointing to the symbol table entry for that variable (this new entry

is created if there is no such entry already in the symbol table) . The is-input is-output

flag of this new entry is made equal to the variable that they are created for and the

type of use field of this new entry is set to reflect what kind of entry it is. For RANGE

and LAST, the filetype field will contain the number of repetition of it as found. In

the most complicated case of reference to a data item the other.yointers field of a

LAST entry may point to a RANGE entry, the otherjointers field of which may
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point to a ADDRESS entry, the otherpointers field of which may finally point to the

actual data item (the field of some file structure). If in a reference to a data item

"LAST." appears after some "RANGE." in the user's program then "LAST." is

replaced by another "RANGE.". Such replacement does not change the value of the

prefixed variable. Furthermore, only one entry for "RANGE" with correct number of

count of repetition (of RANGE and LAST) is sufficient. This is not true if "LAST." is

the first prefix in the reference. In the later case entry for both "LAST" and

"RANGE" has to be made in the symbol table. Example 1 through 3 in this section

(shown later) shows all different cases that may arise. Example 3 is the most compli-

cated among them.

The major difficulty in creating symbol table entries and filling their different

fields is that the various attributes qualifying the symbol table entry (that are to be

used to fill in the different fields) can be found scattered (in any order) throughout the

user's program. This flexibility is very much welcomed from the user's point of view.

On the other hand this makes the parser much more complicated. For this reason some

fields of some symbol table entries are not filled before the end of the parsing phase.

Because of this flexibility in EPL grammar, in some cases even at the end of parsing it

is possible that some attributes of some of the symbols are not declared by the user

neither can they be inferred easily from other information in the user's program.
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These places are left blank by the parser and they are to be filled by other phases of

the system after extensive post-parsing analysis. If after analysis some vital informa-

tion still cannot be inferred from the user's program, then an error will be reported by

the appropriate phase of the system. The attributes that fall in this category include

data type, range, dimensionality etc. Dimensionality field for declared variable is

filled during parsing with the dimensionality value found in the user's program. They

are changed to the correct dimensionality at the end of parsing.

In the following pages the exact structure of the symbol table entries are given in

C source code.

2.1.3. Symbol Table Structure in "C"

Following is the structure of the symbol table definition in C. It is available in the

file -epl/include/symboltable.h in the system SEQUENT.

typedef struct Sym-tab-entry { /* The structure of a single entry
of the symbol table. */

char *symbol-name; /* Pointer to the symbol name */
struct Sym tab entry *parent; /* Pointer to the entry of the parent */
struct Sym tab-entry *old-child; /* Pointer to the entry of the oldest

child */

unionf
struct Symtab entry *st;
struct St.ptr list *1;) sibling;
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/* Pointer to the entry of the next sibling.
Pointer to a link list of names ,in

case this is an entry for sublinear
subscript. */

short typeof use; /* 'type of use' of the symbol:
0 = Means that the entry represents an

identifier that has not been declared
,has not been used as the target of
an assertion, and has not appeared
in an indexing expression.

1 = subscript
2 = field
3 = group
4 = record
5 = file
6 = last
7 = present
8 = range
9 = The entry is for an undeclared

identifier that has been used as a
target of a assertion.

10= The entry is for an undeclared data
name that has been found to be the
target of an assertion.

1 I= Function
12= Address
14= Constant
15= CASE

short filetype; /* type of file in which this symbol belongs
0 = sequential
1 = direct
2 = display
3 = port
4 = not known yet */

short type; /* type of the field:
-n = character (n)
0 = yet unknown or the entry is not for
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a field.
I = short (integer)

2 = integer
3 = long (integer)

4 = real

5 = double (real)
6 = quad (real)
7 = logical.
8 = char (no size known yet) */

struct (
unsigned is input: 1; /* is the entry a part of an input file "1
unsigned is output: 1; /* is the entry a part of an output file*/
unsigned others 2; /* indicate the type of subscript

sublinear = 1
non-sublinear = 0; OR

the porttype if the entry is for a symbol
which is a part of the port file

For porttype
0 = IN => OUT
1 = OUT => IN
2 = nothing said.

unsigned rec : 2; /P to keep the following information about
the record type

0 = ordinary

I = RECORD IN
2 = RECORD OUT */

unsigned casekey : 1; /P This will be set only for those symbol
table entry which are used as the key
field for some CASE substructure */

unsigned localsub: 1; /* This field is set only when the entry is
for a local subscript */

unsigned casebelow: 1; /* This field is set for the record entries
when there is a CASE entry found as a
descendent of that record entry

unsigned string: 1; /* This field is needed to indicate
whether the entry is for a string

or for a integer or real or variable
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name */

unsigned diniproc: 1; /* This bit is used for dimensionality
propagation. When dimensionality of
this entry has been established this
bit will be set to 1 */

unsigned undef : 1; /* This bit is set to indicate that the
file (when IN=>OUT or OUT=> IN is found)
has been created though its definition is
not found as yet. */

unsigned bck_ptr: 1; /* This pointer when set to 1 indicates that
there is a RANGE or LAST symbol table
entry that points to this entry. */

} io-flags;

struct Rangedef blk *range; /* Pointer to the range definition
block that corresponds to the
symbol */

short dimensionality; /* indicates the dimensionality of the symbol.
If the symbol is not subscripted then it
contains 0 */

union(
struct Rec case *rc;
struct Eqctree-node *eqt;
struct Symtabentry *operand;
char *name;
int recordlength;
int keyoffset; ) other_pointers;

/* Pointer to the head of the when expression
list in case CASE entry. Pointer from the LAST,
PRESENTRANGE or ADDRESS entry to the variable.
pointer to the root of the expression tree

(for sublinear subscript entry)
pointer to the format string if it is an
entry for a field of a display.

struct Arrynode *ptr_arr_gr /* pointer to the corresponding
entry in the array graph */

/* pointer used during range propagation */
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union / 0 and scheduling ./
suct Node sub "nodesub; /0 node-sub for subscnpt enmes .1
strct Eqote _node Oiotree; P pare tree foir t/o event scheduhng */

) range sched info;

union (
smact Eqtnodelist *node; /0 A pointer to (he Its( of equation am

nodes. 0/
sM.'ct Eqjeelist *eqt. /0 A pointer to a list of equaton tree

heads.
I eqt_ptr.

struct Sym_tab entry *next. /1 pointer to the next symbol table entry */
Symtab entry;
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2.1.4 Coda imed for Symbol table processing

The definition of different codes used in the symbol table are listed below.

These definitions are used throughout the EPL system instead of the actual integer

codes for the convenience of the designers.

FILE TYPE INTEGER CODE

defune SEQ 0
#defne DIRECTED I
#define DISPLAY 2
#define PORT 3

Table I Table. 1: The different file types used in EPL.

TYPE INTEGER

#define VOID 0
#define SHORT 1
#define INTEGER 2
#define LONGINT 3
#define REAL 4
#define DOUBLE 5
#define QUAD 6
#define LOGICAL 7
#define CHAR 8
#define ERROR 99

Table 2: Table showing all the different types for variables allowed in EPL.
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USE INTEGER CODE

#define UNDEF 0
#define SUBSCRIPT I
#define FIELD 2
#define GROUP 3
#define RECORD 4
#define FILE_ 5
#define LAST 6
#define PRESENT 7
#define RANGE 8
#define UNDEF9 9
#define UNDEF10 10
#define FUNCTION 11
#define ADDRESS 12
#define CASE 14

Table 3 Table showing all possible types of symbol table entries.

2.1.5. Examples showing symbol table entries

In this section some examples are shown regarding the contents of the different

symbol table entries. At the end of the description of the Rec-case and Case struc-

tures more meaningful examples involving all of these structures has been shown. The

diagrams are included for clarity.

Example 1 For the equation

range.range(2).range.range.d = 8;

the corresponding symbol table entry contains (Fig. 2)
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Entry is made for the symbol: RANGE
Parent: NULL
oldest child NULL
next sibling • NULL
type of use: Range
file type contains the integer 5
type : integer
I/O flags : 000 000000
Dimensionality : 0
Other_pointers points to the entry for D
Range: NULL

Example 2 For the equation

range.range(2).last.last(2).range.range.address.d - 5;

The corresponding symbol table entries are (Fig. 3):

Entry is made for the symbol: RANGE
Parent: NULL
oldest child : NULL
next sibling NULL
type of use: Range
file type contains the integer 8
type :integer
1/O flags :100 00000
Dimensionality : 0
Otherjpointers points to the entry for ADDRESS
Range: NULL

Entry is made for the symbol: ADDRESS
Parent: NULL
oldest child • NULL
next sibling : NULL
type of use: Address
file type : Sequential
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type yet unknown or the entry is not for a field
1/O flags :100 00000
Dimensionality : 0
Otherjpointers points to the entry for d
Range : NULL

Please note that in this case no separate entry for LAST has
been created since semantically the above equation is same as:

range(8).address.d = 5;

Example 3 If LAST is the first item in the reference for a variable then
the entry for LAST will be created as in (Fig. 4):

last.last.last(5).range.range(2).last.last(2).range.range.address.d

= 5;

The corresponding symbol table entries are

Entry is made for the symbol: LAST
Parent: NULL
oldest child : NULL
next sibling : NULL
type of use: Last
file type contains the integer 7
type : yet unknown or the entry is not for a field
i/O flags : 000 00000
Dimensionality :0
Otherjpointers points to the entry for RANGE
Range : NULL

Entry is made for the symbol: RANGE
Parent: NULL
oldest child : NULL
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next sibling : NULL
type of use: Range
file type contains the integer 8
type : integer
I/O flags : 000 00000
Dimensionality : 0
Otherjpointers points to the entry for ADDRESS
Range : NULL

Entry is made for the symbol: ADDRESS
Parent: NULL
oldest child : NULL
next sibling : NULL
type of use: Address
file type : Sequential
type : yet unknown or the entry is not for a field

VO flags : 000 00000
Dimensionality : 0
Otheryointers points to the entry for d
Range: NULL

In the case of subscript we fill the type of use field with SUBSCRIPT and

the sibling field points to a list of variables that can use that subscript. The fol-

lowing example illustrates this point.

Example 4 If we have the declarations as

input: outfile; out: outfile. dispfile;

file: outfile (direct),
10 rec: our[*).

20 int: intf:
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subs: i of (our,I , WE, YOU);

Then the symbol table of subscript i will contain (Fig. 5):

Entry is made for the symbol: i
Parent: NULL
oldest child : NULL
Sibling : next sibling points to the following list

OUT-our
our
I
WE
YOU

type of use: Subscript
file type • Sequential
type • yet unknown or the entry is not for a field
I/O flags :000 00000
Dimensionality : 0
Otherjpointers is NULL
Range : NULL

It is to be noted here that OUT-our and our are both in the list because our

belongs to a DIRECT file which has been declared both as input and as output.

2.2. Rec case and Case structures

Equational programming language permits vary flexible file structures. Different

records in a single file can be interpreted in different manners. This feature allows the

user to keep non-similar records, that are to be treated uniformly by the algorithm, in a
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single file. There may be various structures of these records, i.e., there may be many

different ways in which the chunk of bits in a record can be broken and interpreted by

the user's program. To determine which of the many possible structures are to be used

for interpretation, there is a field in the record which is at a constant distance from the

beginning of the record. The value of this field is used to determine the structure to

be used for interpretation.

Each different structure (more appropriately, this is a substructure ) is preceded

by the keyword "WHEN" (or it may be preceded by the keyword "OTHER", if it is

the last substructure in the list of alternative substructures ) in user's program.

Immediately after "WHEN" is a binary expression that may involve the structure deter-

mining field mentioned above. If this binary expression is evaluated to the logical

value "true" for the record being processed then the record is to be interpreted of the

structure that follows the "WHEN". If there is more than one "WHEN" for which

binexp evaluates to "true" (in this case the semantic of the grammar is not strictly

defined) the first structure for which the binexp is "true" will be selected. If none of

the binary expression is "true" then the structure following the keyword "OTHER" (if

there is an alternative preceded by "OTHER") is selected for the interpretation of the

record being read. Again the semantic of the grammar is not well defined in this case

if there is no "OTHER" clause.
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During parsing we need to store all of these user supplied information in a con-

venient way. For this purpose two structures Reccase and Case is used. Also a new

symbol table entry for the symbol "CASE" is to be used for this purpose.

Each time a new CASE is found in the source code while expanding the parse

tree for <declaration> a new symbol table entry for a group named CASE (thus CASE

is a reserved word) is created. The "otherjpointers" field of this entry will point to the

structure "Reccase" which has two fields as described below. In the Symbol Table

there may be many groups in the same file having the symbol name CASE , but that

will not cause any referencing problem, because the user will never refer to any vari-

able using the symbol name CASE.

1. st This field contains a pointer to the symbol table entry for the symbol

that appears in parenthesis right after "CASE" in the source code.

This is the field name in the record which is at a fixed distance (in

terms of bytes) from the beginning of the record and which deter-

mines how the information contained in the record being read from

the disk storage are to be interpreted.

2. ptr This field contains a pointer to the head of the link list of "Case"

structures (described below). For each "WHEN" in the source code
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(which defines a new alternative substructure) a new "Case" struc-

ture is created. A "Case" structure contains all the relevant informa-

tion for a "WHEN" declaration.

A "Case" structure contains four fields:

For each WHEN a "Case" structure is created where the contents of the different fields

are:

eq: This field contains a pointer to the equation tree node whose label is

"caserec" (described in the equation tree description) and whose

right son points to the root of the "expression" tree that corresponds

to the expression right after WHEN. This is the expression which is

to be tested, each time a new record is read from the disk storage,

to determine whether this substructure should be selected for break-

ing the information in the record read in a meaningful way.

st : This field contains a pointer to the symbol table entry for the first

symbol (this is like a "oldestchild") that appears after WHEN. The

substructure that is associated with the "WHEN" declaration being

represented by this "Case" structure is pointed to by this field.

l I I - "A
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sublinear Associated with each of the "WHEN" declaration there must be a

sublinear subscript. This sublinear subscript is used for indexing

through the same type of records (that is, records that are to be

interpreted in the same manner, in other words records that are to be

broken into different logical parts using the same substructure -- the

substructure that is being defined by the "WHEN" expression under

consideration) in the file being read. This field contains a pointer to

the symbol table entry of this sublinear subscript and in the user's

program this sublinear subscript is to be found within the current

WHEN clause.

next In the declaration there may be many "WHEN" clauses. All of the

"WHEN" clauses that are under the same "CASE" are all to be

found in a single link list. This field contains a pointer to the next

"Case" structure that corresponds to the next "WHEN" clause after

the current one. If this is the last "WHEN" clause (representing the

last alternative for interpretation), then this field contains NULL.

The substructure followed by "OTHER" is treated uniformly as

"WHEN". But in this case there is no equation tree. In this case the

AP
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right son of the "case-rec" equation tree node points to NULL.

2.2.1. Definition of Reccase and Case structures in "C"

The definition of Case and Rec Case structures in C is shown below. These

definitions are available in the file "epl/include/defn.h file in the system sequent.

typedef struct Case (
struct equation treenode *eq;
struct SYM TAB ENTRY *st;
struct SYMTABENTRY *sublinear;
struct Case *next;

};

typedef struct Reccase
struct SYMTABENTRY *st;

struct Case *ptr;);

2.2.2. Examples

In this section some examples are shown that illustrates the contents of the sym-

bol table in different situations. In the beginning some examples are given that

involves simple file structures. At the end of this section a more complicated example

has been given which involves declaration of a file using CASE to select from alterna-

tive substructures.
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Example 1 In this example a simple file structure is considered. The file struc-

ture is as follows

file:a,
1 rec : b[*],

2 group: c[51,
3 int : d;

Nothing is mentioned about the I/O status of the file (The I/O definition may be

available at a later stage of parsing).

The content of the symbol table entries for each of the data items in this file

structure is given below. Fig. 6 depicts the file structure that is embedded in the sym-

bol table.

Entry is made for the symbol: a
Parent: NULL
Oldest child : b
next sibling : NULL
type of use: File
file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0
Other pointers is NULL
Range : NULL

Entry is made for the symbol: b
Parent : a
Oldest child : c
next sibling : NULL
type of use: Record
file type : Sequential



- 45 -

type yet unknown or the entry is not for a field
I/O flags 000 00000
Dimensionality : I
Other_pointers is NULL

Entry is made for the symbol: c
Parent : b
Oldest child : d
next sibling : NULL
type of use: Group
file type : Sequential
type : yet unknown or the entry is not for a field
1/O flags : 000 00000
Dimensionality : 1
Other pointers is NULL

Range : Following are the ranges defined --

is-static: 1, ceiling: 5, type

Entry is made for the symbol: d
Parent : c
Oldest child : NULL
next sibling : NULL
type of use: Field
file type • Sequential
type : integer
I/O flags : 000 00000
Dimensionality : 0
Otherpointers is NULL
Range : NULL

Example 2
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This example shows the content of the symbol table (relevant portions) in the

case of a PORT file. Though user has declared only one file, in this case in the sym-

bol table there will be two different file structures. The file declaration is divided into

two different files for PORT files which are of the type "IN => OUT" or "OUT =>

IN". In these two cases the PORT file is declared both as "input" and as "output".

After breaking up the file two file structures are created. One of them is treated as

"input" file the other one is treated as "output" file. In the declaration of these type of

file there are always exactly two record definitions. One of them is "record in" the

other one is "record out". the "input" file is given the "record in" record and the "out-

put" file is given the "record out" record. The "input" file retains the same name as

that of the original file (as declared by the user), the "output" file along with all the

data items that belongs to the "output" file have their name changed to another name

which is obtained by prefixing "OUT_" to their original name. The DIRECT files

which are declared as "input" as well as "output" are also treated in the same manner.

Only difference is that both the file in the case of DIRECT' file have identical file

structure. The naming convention for the two files created are same for DIRECT file

and PORT file. If the PORT file is not any of these types then the file will not be bro-

ken.

The example uses the following file declaration
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file: inmes (port in=>out),
10 rec in : inrec,

20 int: start,stop,

10 rec out : outrec,

20 int: res;

The relevant symbol table entries are as follow (figure 7 shows the structures of

the files)

Entry is made for the symbol: INMES

Parent: NULL

Oldest child : INREC

next sibling: NULL

type of use: File

file type : Port

type • yet unknown or the entry is not for a field

1/O flags :100 000000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

Eqt_ptr : NULL

Entry is made for the symbol: INREC

Parent : INMES

Oldest child: START

next sibling : NULL

type of use: Record
file type : Port

type : yet unknown or the entry is not for a field

I/O flags :100 100000

Dimensionality : 0

Otherjointers is NULL
Range : NULL

Eqt_ptr : NULL
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Entry is made for the symbol: START

Parent : INREC
oldest child : NULL
Next sibling : STOP
type of use: Field
file type: Port
type : integer
1/O flags :100000000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
Eqt_ptr : NULL

Entry is made for the symbol: STOP
Parent : INREC
oldest child : NULL
next sibling : NULL
type of use: Field
file type : Port
type : integer
1/O flags :100 000000
Dimensionality : 0

Otherjpointers is NULL
Range : NULL
Eqtptr : NULL

Entry is made for the symbol: OUT_INMES
Parent: NULL
Oldest child : OUT OUTREC
next sibling : NULL
type of use: File

file type • Port
type yet unknown or the entry is not for a field
1/O flags :010 000000
Dimensionality : 0
Otheryointers is NULL



- 49 -

Range: NULL
Eqt_pr: NULL

Entry is made for the symbol: OUTOUTREC
Parent : OUT INMES
Oldest child: OUT RES
next sibling : NULL
type of use: Record
file type : Port
type : yet unknown or the entry is not for a field
I/O flags : 010 200000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
Eqtptr : NULL

Entry is made for the symbol: OUTRES
Parent : OUT OUTREC
oldest child : NULL
next sibling : NULL
type of use: Field
file type : Port
type : integer
1/O flags : 010 000000
Dimensionality : 0
Otherjpointers is NULL
Range : NULL
Eqt_ptr points to the equatioai tree node: 0X22380

Example 3

For a more complicated example using "CASE" in the declaration of file struc-
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tures the following example is used.

The file is declared as follows

FILE: geometry file (SEQ),
5 RECORD : geometric[* <= 5001,

10 CHAR(9): name,
10 LOGICAL: color,
10 CASE (name)

WHEN "point":
15 REAL: xp,

SUBLINEAR sub_point
WHEN "plane":

15 GROUP: XX[3],
20 REAL: xpl,

15 GROUP: YY[3],
20 REAL : ypl,

SUBLINEAR subplane,
10 CASE (color)

WHEN TRUE:
15 INT : hue,

SUBLINEAR subcolor;

The corresponding symbol table entries and the equation trees pointed to by the

otheryointers of the sublinear subscript entries are as follows (Fig. 8 shows the struc-

ture of the symbol table along with the Reccase and Case structures for this example)

Entry is made for the symbol: geometricfile
Parent: NULL
Oldest child : geometric
next sibling : NULL
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type of use: File
file type Sequential
type yet unknown or the entry is not for a field
1/O flags :100 00000
Dimensionality : 0
Other.pointers is NULL
Range : NULL

Entry is made for the symbol: geometric
Parent : geometryfile
Oldest child : name
next sibling: NULL
type of use: Record
file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags :100 00010
Dimensionality : I
Otherjointers is NULL

Entry is made for the symbol: CASE
Parent: geometric
oldest child : NULL
next sibling : CASE
type of use: Undef 0

file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags :100 01000
Dimensionality : 0
Otherjointers points to the rec-case entry for name
Range: NULL

Entry is made for the symbol: name
Parent : geometric
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oldest child : NULL
Next sibling : color
type of use: Field
file type : Sequential
type : char(9)
1/O flags : 100 00000
Dimensionality : 1
Otherjpointers is NULL
Range : NULL

Entry is made for the symbol: CASE
Parent: geometric
oldest child : NULL
next sibling: NULL
type of use: Undef 0
file type : Sequential
type : yet unknown or the entry is not for a field

IO flags : 100 01000
Dimensionality : 0
Other-pointers points to the rec case entry for color
Range : NULL

Entry is made for the symbol: color
Parent : geometric
oldest child : NULL
Next sibling : CASE
type of use: Field
file type : Sequential

type • logical
1/0 flags :100 00000
Dimensionality : 1
Otherjpointers is NULL
Range : NULL



L

-53 -

Entry is made for the symbol: point
Parent: NULL
oldest child NULL
next sibling NULL
type of use: Undef 9
file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: xp
Parent : CASE
oldest child : NULL
next sibling : NULL
type of use: Field
file type : Sequential
type : real
1/O flags : 100 00000
Dimensionality : 0
Otherointers is NULL
Range : NULL

Entry is made for the symbol: sub_point
Parent: NULL
oldest child : NULL
next sibling: NULL
type of use: Subscript
file type : Sequential
type : yet unknown or the entry is not for a field
1/0 flags : 000 00000
Dimensionality : 0
Other pointers points to the equation tree head: OX1E160
Range : NULL



* -54-

Entry is made for the symbol: plane
Parent: NULL
oldest child : NULL
next sibling: NULL
type of use: Undef 9
file type : Sequential
type : yet unknown or the entry is not for a field
1/0 flags : 000 00000
Dimensionality : 0
Otherjointers is NULL
Range : NULL

Entry is made for the symbol: XX
Parent: NULL
Oldest child : xpl
Next sibling : YY
type of use: Group
file type : Sequential
type : yet unknown or the entry is not for a field
1/O flags :100 00000
Dimensionality : 1
Otherjpointers is NULL

Range : Following are the ranges defined --

isstatic: 1, ceiling: 3, type

Entry is made for the symbol: xpl
Parent : XX
oldest child : NULL
next sibling : NULL
type of use: Field
file type : Sequential
type : real
1/O flags :100 00000

_!
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Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: YY
Parent: NULL
Oldest child: ypl
next sibling: NULL
type of use: Group
file type : Sequential
type : yet unknown or the entry is not for a field
1/O flags :100 00000
Dimensionality : 1
Other_pointers is NULL

Range : Following are the ranges defined --

is-static: 1, ceiling: 3, type

Entry is made for the symbol: ypl
Parent : YY
oldest child : NULL
next sibling : NULL
type of use: Field
file type : Sequential
type : real
1/O flags : 100 00000
Dimensionality : 0
Otherjpointers is NULL
Range : NULL

Entry is made for the symbol: sub_plane
Parent: NULL
oldest child : NULL
next sibling : NULL
type of use: Subscript
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file type Sequential
type yet unknown or the entry is not for a field
I/O flags 000 00000
Dimensionality : 0
Other pointers points to the equation tree head: OXlE200
Range : NULL

Entry is made for the symbol: TRUE
Parent: NULL
oldest child NULL
next sibling: NULL
type of use: Undef 0
file type : Sequential
type : logical
I/O flags : 000 00000
Dimensionality : 0
Otherj ointers is NULL
Range : NULL

Entry is made for the symbol: sub color
Parent: NULL
oldest child : NULL
next sibling : NULL
type of use: Subscript
file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags • 000 00000
Dimensionality : 0
Other pointers points to the equation tree head: OX1E320
Range : NULL

Entry is made for the symbol: hue
Parent : CASE
oldest child : NULL
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next sibling NULL
type of use: Field
file type : Sequential
type : integer
1/O flags : 100 00000
Dimensionality : 0
Other.pointers is NULL
Range : NULL

The equation trees that are being pointed to by the otherjpointers field in the
symbol table entries for the sublinear subscript entries are as follows:

Following are the sublinear subscripts found in the specification

Name of the sublinear subscript: subcolor
The otherjointers points to the following equation tree:

addr- 0XIE320, label- <literal>, left- TRUE, right- 0,
parent- 0X21100, type- void, cnvrt- void

Name of the sublinear subscript: sub.plane
The otherjpointers points to the following equation tree:

addr- OXIE200, label- <variable>, left- plane, right- 0,

parent- OXIE600, type- void, cnvrt- void

Name of the sublinear subscript: sub.point
The otherjpointers points to the following equation tree:

addr- OX1E160, label- <variable>, left- point, right- 0,
parent- OX1E600, type- void, cnvrt- void
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2.3. Equation Trees

2.3.1. General Structure

The equation trees generated by the parser are teh linked lists of equation tree

roots with a scalar pointer variable indicating the first tree on the list. The equation

trees on this list will be made up of a collection of tree nodes connected together as a

binary tree. The logical structure of a single tree node is described below.

The fields of this structure are defined as follows:

label : The "label" field will be used to indicate what semantic entity the

node represents. The field will be an integer and the semantic enti-

ties are assigned specific codes, given in table two, to be used in this

field.

left: The field labeled "left" will be a pointer to the left child of the equa-

tion tree node. The pointer can be a pointer to another tree node, a

pointer to a symbol table entry, or it can be nil.

right : The "right" field will be a pointer to the right child of the node. The

right child of an equation tree node will always be another equation

tree node or nil.

S
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parent: A pointer to the parent of each node will be recorded in the "parent"

field. The <assertion> node will have a pointer to the tree list node

which points directly to it. The <sublin> node will have a pointer to

the symbol table entry for the sublinear subscript that the tree is a

condition of. The <case rec> node will have a pointer to the sym-

bol table entry for the record name that the case expression is a con-

dition of.

type : The "type" field will indicate the data type of the expression or

literal that the node represents. The values that can be entered in

this field are the integer encodings of the EPL data types plus codes

to indicate when an error has been encountered during data type pro-

pagation. Initially this field will be zero for all nodes. The data

type encodings are given in table one.

convertfrom : The "convertfrom" field will be used to alert the code generator

that the expression or literal represented by the node must be con-

verted from some type indicated by this field to the type indicated

by the field previously described. Initially this field will be zero for

all nodes. During type checking the value of "type" and

"convert-from" will be changed whenever necessary to reflect type

____________________________________________ ____
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conversion necessary for expression evaluation.

The logical structure for the nodes used to hold individual equation trees in the

list of equation tress is described below.

The fields of this structure are defined as follows:

tree : The "tree" field is a pointer to the root of the equation tree that the

node links in the list.

is-range : If the variable defined by the assertion(s) is a "RANGE" prefixed

item, then the "is-range" flag will be set to true to denote this fact.

For normal variables "isrange" is always false.

target : A pointer to the symbol table entry for the variable defined by the

assertion is loaded into the "target" field of the structure.

multi def: If some variable or range is specified as the target of more than one

assertion, all definitions of the quantity after the first will be linked

to the first definition through the "multi def' pointer field. Dupli-

cate definitions will not appear in the main equation tree list.

assertion • The relative position of the assertion within the source file will be



-64-

used to mark the assertion when identifying error and warning mes-

sages to the user.

next The pointer to the next tree in the list of trees will be held in "next."-

An empty "next" pointer indicates the end of the list.
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The definition of the tree nodes, linked list nodes and the linked list head pointer

will be as follows:

typedef struct Eq.ueenode 1' binary tree node template */
short label: /* type of node *1

union (
Symtab entry *symbol; P For child from symtab */
struct ELtree node *tree; /P for child that is tree */

left: * left child pointer /

struct Eq.ree node *right; /* right child pointer */
union {
struct Eq..ree node *tree; /* for normal parent */
stauct Eq.tree list *list; /* for parent of <assertion> */
Sym tab entry *symbol; /* for parent of <sublin>

or <case rec> */

parent; /* parent pointer */
short type; /* arithmetic type of result */
short cnvrt from; /* type to convert from */

} Eq_tree node;

typedef struct Eq_tree list P /* node to hold tree in list */
Eq_tree_node *tree; /* pointer to head of tree */
short is range:l; /* flag for range definition */

Sym tab entry *target; * entity defined
struct Eq.treelist *multi.def; /* multiple defintion chain */
short assertion; /' assertion label */

struct Eq.tree list *next; /* next node in list
} Eq_tree list;

extern Eqctree list *equation-trees;
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LABEL INTEGER CODE

#define ASSERTION 3
#define SUBLIN 4

#define CASE REC 5
#define IF-EXP 6

#define IF-ACTION 9
#define CASE EXP 12

#define WHENTEST 15
#define WHEN-ACTION 18
#define OTHER ACTION 21

#define VARIABLE 24
#define INDEX 27
#define BINARY-OR 33
#define BINARY-AND 34
#define BINARY EQ 35
#define BINARY NE 36
#define BINARYGE 37
#define BINARY-LE 38
#define BINARY -GT 39
#define BINARY-LT 40

#define BINARY-CONCAT 41
#define BINARY-PLUS 42
#define BINARY MINUS 43
#define BINARYTIMES 44

#define BINARY DIVIDE 45

#define B3INARY -POWER 46
#define UNARY -PLUS 51
#define UNARY -MINUS 52
#define UNARY -NOT 53
#define FCALL 60
#define PARMS 63
#define LITERAL 66
#define SUB 69

Table 4 Table showing the integer codes used to label equation tree nodes.
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2.3.. Node Label Definitions

The labels for the various nodes that the equation trees will be consuucted from

are defined as follows.

<aserion>

<variable> <expr&uon>

<expression> ::= <if exp> I <case.exp> I <binexp>

The BNF-like notation above is intended to indicate that the symbol <expression>

is actually a generic form for any expression, including if-then constructs, case con-

structs, or simple expressions.

<sublin>

nil <expresion>

<ca$ec_rC>

nil <binexp>
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The <assertion> node will be used to link assertions into the equation tree list.

The <sublin> and <case.rec> nodes will be used to link sublinear subscript expres-

sions and record level case expressions into the symbol table. When the trees are

being scanned from the bottom up, these three node types will indicate what type of

parent the tree has so that information can be drawn from the equation tree header

block or symbol table entry when necessary.

<if_exp>

<bineip> <if-action>

<if_ation>

<exp mon> [<expresion>]

The <expression> on the left is evaluated if the <binexp> of the parent <if-exp>

is true. If the right <expression> pointer is not nil this expression is evaluated if the

<binexp> of the parent <if.exp> is false.

Note that there is no unique node for ELSEIF. Since many languages do not pro-

vide an "elseif" clause for their "if-else" constructs it is best to convert the "if-else-
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endif" into nested "if"s at the time the source program is parsed to reduce the work in

code generation and specification analysis.

<ca|cezp>

<variable> <when-test>
<whenaction>

<when-tert> <binexp> <binexp>

<whcn-action> [<whe-test> I<other-.actiofl>]

The <binexp> on the left is the case-expression that is to be tested for "<vari-

able> = <binexp>." The <binexp> on the right is the expression that is to be

evaluated if the above test is true.

< other-acuon>

nil <binexp>

The <binexp> on the right is the expression to be evaluated if all previous case

expressions were false. The <binexp> is placed on the right and the left link remains

-J
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nil for the sake of consistency with <when action>.

<binexp> ::= <variable> I <binaryj> I <binary_&> I <binary_==> I <binary_!=> l
<binary_>=> I <binary ..<=> I <binary> I <binary_ > I

<binaryl I <binary_+> I <binary_-> I <binary_*> I
<binary/> I <binary_**> I <unary_+> I <unary_-> I
<unary_-> I <fcall> I <literal> I <SUB>

<variable>

name [<index>]

Where "name" is a pointer to the symbol table entry for the name referenced.

<index>

<binexp> [<index>]

The generic form for binary and unary expressions will be as follows:

<binary-x>

<binexp> <binexp>

<unary-x>

nil <bineip>

I[
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The <binexp> is placed on the right to allow the same in-order traversal to be

used for both binary and unary sub-trees.

<fcall>

name [<Parms>J

<palmns>

<binexp> [<Pam>]

<literal>

(TRLTALSEIPROChl3U1W15Uf) nil
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<SUB>

name [<index>]

All variables that are found to be subscripts during analysis will be converted to

<SUB> nodes and reinserted in the tree. The keywords SUBO through SUB9 (if used

in the user's program) will appear in the symbol table suffixed by an underscore fol-

lowed by the equation number in which it is used (for example, if SUB5 is used in the

equation number 4 then its symbol table entry will be SUB5.4). By making this

change it is made sure that the different use of the same SUBO (or other SUB) will

have seperate entries, so the equation tree will point to the correct reference.

S
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The codes that will be loaded into the "label" field of the equation tree nodes are

defined in the following table. Note that code numbers are sparsely assigned so that

future enhancements to the language can be inserted into the table in logical locations.
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Type value

<assertion> 3

<sublin> 4

<case rec> 5
<if exp> 6

<ifraction> 9

<caseexp> 12

<whentest> 15
<when action> 18

<other action> 21

<variable> 24

<index> 27

<binayy_ 33

<binary_&> 34

<binary--> 35

<binary-!=> 36

<binary_>--> 37

<binary-<=> 38

<binary->> 39

<binary_<> 40

<binary)t 41

<binary_+> 42

<binary-> 43

<binary-*> 44

<binaryb> 45

<binary '*> 46

<unary_+> 51

<unary_-> 52

<unary_ > 53

<fcall> 60
<parns> 63

<literal> 66
<SUB> 69

Table 5: Table showing the integer codes used for different equation tree nodes.
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2.4. Range Table

2.4.1. General Structure

In our attempt to develop consistent range specifications from the program written

by the user there will be three major phases. The first phase will take place at the

time the user's specification is parsed as we draw from the user's declarations as much

information as we can regarding the structures defined by the user. The second phase

begins while we are constructing the array graph, as we mark the nodes in the array

graph with the subscript and range information that can be inferred from the user's

equations. Once the nodes in the array graph have all been set in place and decorated

with the range information obtained from the assertions, range propagation procedures

will begin combining all the information gathered into sets of ranges that are required

to execute the user's program.

To fulfill the requirements of the first phase, we will make definition blocks that

can be pointed to by any structure in the symbol table that is declared with ranges, or

any structure that is not declared but is discovered to have ranges during dimension

propagation. Definition blocks will be linked together in a list with the head of the list

being a pointer in the symbol table for an entry that has ranges. Blocks will be placed

in the list in the same order that they are declared, with the leftmost range of an entity

being the first range on the list. Each block will have fields containing information

found at compile time, as well as fields that are intended to be filled during later
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analysis and optimization phases.
4

Another set of range definition blocks will be constructed later, after range propa-

gation is complete. For each range set that is formed for the specification, a single

range definition block will be created. This block will be pointed to by the

"deflist.rdb" pointer in the range set header structure (described below). The block

will contain all information relevant to the range, including all dynamic definitions and

the single ceiling that pertains to all subscripts indexing the range.

The logical structure for a range definition block is given below.

The fields of this structure are defined as follows:

def: The first field in the structure will be a pointer to the head of a pos-

I
sible list of dynamic definition blocks (described below) that apply

to the range in question. The "def" field will not be filled until the

initial phases of range propagation associate RANGE assertions and _4

end-of-file items with the ranges that they define. If, after range

propagation, the "def" field is nil, the range has no dynamic

definitions.

sub-name • The "sub-name" field is a field that is provided for use in the code



- 77 -

generation phase for holding temporary subscript names that apply to

ranges. This field will not be loaded with any meaningful data until

code generation begins.

isstatic If the user defined the range as having an explicit upper bound, the

range is considered static and the "is static" flag is set to true. If

the range was defined by an asterisk, or an asterisk and an upper

limit, the dimension is considered dynamic and the "is_static" flag is

set to false.

ceiling Whenever a numeric bound is defined for a range the "ceiling" field

will contain the value of that bound. If the range has neither a static

bound nor a dynamic bound the value of this field will be zero.

window If the optimization phase of translation windows a dimension it will

load the length of the window into the "window" field. The "win-

dow" field will only be meaningful if the value of the "type" field

(described below) is 'W.'

type Once optimization is complete, the "type" field for each dimension

will hold a single character constant indicating what degree of

static/dynamic character the range has. The value 'P' will indicate a

It
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physical dimension, 'V' will indicate a virtual dimension and 'W'

will indicate that the dimension has been windowed. If the range is

windowed, the window length will be loaded into the "window"

field. The "type" field will be loaded with a blank when the block is

initially constructed.

rangeset To allow easy access to the range set that any range definition block

is a member of, the "rangeset" pointer will be used. This pointer

will be nil initially, and range propagation will load it with a mean-

ingful value once the range sets are created.

next The next range definition block in the linked list of range definition

blocks attached to a symbol table entry will be pointed to by the

"next" field. If the field is empty the list ends. This field will

always be empty when the block is used as the common block for a

range definition at the close of range propagation.
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3. ALGORITHMS FOR LEXICAL ANALYSIS

3.1. The Objective

The lexical analysis is the first phase of the EPL system. As mentioned before,

the purpose of this phase is to break the input stream of characters (i.e., the user-

specification into a stream of tokens. By doing this we reduce the volume of informa-

tion processing required by the later phases of the translator. This phase works interac-

tively with the parser. Each time parser needs another token for building the parse tree

it calls the lexical analyzer, which in turn absorbs some of the characters from the

input stream (keeping a pointer, to indicate where to start reading, in the input stream

next time it is called by the parser) and returns the token that causes the largest

number of characters to be absorbed from the input stream. To be more specific, in

cases when the characters at the top of the input stream can produce more than one

token the decision is made in favor of the token that corresponds to the largest number

of input characters. If there are more than one token that corresponds to the largest

number of input characters then the token that is defined earlier among these are

chosen.

For the lexical analysis purpose LEX has been used. Since there are some

features in the grammar of EPL that causes the grammar not to belong to LALR (I),
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some tricks has been used through the lexical analyzer to resolve this problem (since

we are using YACC for parsing, we need to have our grammar in LALR (1) ). The

parser is confused when faced with ',' in a few places (i.e., it has more than one alter-

native to proceed with parsing). For that reason lookahead is done for ',' so that

different tokens are supplied to the parser in these situations. Following is the LEX

specification for the EPL system.

3.2. The LEX specification.

%{

#include <stdio.h>

extern FILE *yyin;
static int line=l;
int i;

%START format imply ordinary

letter [A-Za-zl
digit [0-9]
space [ 0]
comment "*(/P**'*"")"""/

comma ","({ space )f comment))*

A [Aa]
B [Bb]
C [cc]
D [Ddl
E [Eel
F [Ff]
G [Gg]

I
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H [h]
I [ii]
J [Jj]

K [Kk]
L [LI]
M [Mm]
N [Nn]
o[Oo]
P [rP]
Q [Qq]
R [Rr]
S [Ss]
T [Tt]
U [Uu]
V [Vv]
W [Ww]
X [Xxi
Y [Yy]
Z [Zz]

%p 9999
%a 4000

return(';');}
..... I return(':');)

(comma) (S) (U) (B) (LI (1) (N)((E (A) {R})?(space) (
return(_COMSUBL);}

(comma)/(digit) I
return(_COMMA BEFOREINUM);

" { return(',');)

"[" ( return('[');}

"]" { retumn(']');

"(" { return('(');}
")" { return(')');}
T { return('l);}

"&" ( return('&');)

return('- ');)
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+" ( return('+');}
"1" ( return('I'); )
"-" { return('-');}

"" {return('*');}
"" {return(=');}

.... { return('.');)
"**" ( return(POWER);)

"' { return(CONCAT);)
<imply>"=>" ( return(_IMPLY);)
<imply>"<=" ( return(_REVIMPLY);)
<format>"E" { return('E');)

(P) fR) {O ){C)(E) (S} (S))? f return(_PROCESS);)
IF} (U) (N) IC)((T) (1)(O {N))? { return(_FUNCTION);)
(S) [E) {Q)((U) [E) (N) {T) (I) (A) {L))? ( retum(_SEQUENTIAL);)
(I) {N)/({space))*"." { return(_IN);)
(0) (U) (T)/({space})*"." f return(_OUT);)
(I}(N)({P) (U}(T))? f retum(_INPUT);)
(O (U) (T}((P) {U) fT})? 1 return(_OUTPUT);)
(D) I) (R) {E) (C) (T) { return(_DIRECT);}
{P) {O) (RI (T) return( PORT);)
(D) (I)S} (P)({L) (A) (Y))? { return(_DISPLAY);)
(A) (D) (D) (RI((EI (S) (S))? { return(_ADDRESS);)
(F}IIIL} E) { return( FILE);)
(W) (H) {E) (N) return(_WHEN);)
(G) {R)((O)U))?(P) { return(_GROUP);
{R}{E}{C}({O}{R}{D})? return(_RECORD);)

f{D) Q {0)fU))?{fB){L)(f{E))? return(_DOUBLE);)
{11N) (T)({E) (G) {E) IR))? { return(_INTEGER);)

(C)(H)(A)(R) ( retum(_CHAR); }
(S) (H) (0) (R) (T) return(_SHORT);)
(L)(O)(N)G) { return(_LONG);)
(Q)(U){A){D) return(_QUAD);
(L) (0)(G) (I)C)((A}(L})? f return(_LOGICAL);)
IS) (U) (B}{L) (I) (N)({EI A) (R))? { return(_SUBLINEAR); I
(R)E)(A)(L) ( return(_REAL); )
(S) (U)}f{B)(S) ({C)(R) (1)fP) [T1)? f return(_SUBSCRIPT);
(C){A)(S)(E) ( return(_CASE);
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(0) ( T) (H) (E) (R) (S) (return(_-OTHERS);
(R)(A) (N) (G) (E) ( return( RANGE);
(T) (RH) (I return(_THEN);

(E) (L) (S)I(E) Ireturn (ELSE);
{E){NI(DI{IH(F) (return(_-ENDIF);)
(E) ( L) fS)(Q(E))?(I (F1) F return(_ELSEIF);
{T)(R)(U)[E) {return(_TRUE); )
(F) A) (L) (S) (E) Ireturn(_FALSE);
((P1(R){O) {C)?(I) (D) (return(_PROCID);
(L) (A) (S) (T) (return(_LAST);I
(P)(R)(E)(S}(E)(N)(T) ( return(_PRESENT);
(0)(F) (return(_OF);)
(I) (F) I return(_F);

(S) (U) (B) (digit) (1* local subscript *

Set the global variable "name" to _SUB
followed by the digit, followed by
underscore, followed by the equation
number in which it is found.
return( SUB);)

(letter) ((letter )I( digit )t'")* (*valid symbol *
Change all the letters in the array
"private-copy" to capital letters.

return(NAME);

([digit)+ /*integer constant ~
Set global array "inum copy" to the
string for the integer.
return(_INUM);)

yylval.inum = 0;
return (_RELOP);

(yylval.inum = 1;

return(_RELOP);)
(yylval.inum = 2;

return(_RELOP);)
("'~"' =")( yylval.inum = 3;

return(-RELOP);
yylval.inum = 4;
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return(_RELOP);

, yylval.inum = 5;

return(_RELOP);

<ordinary>((( {digit) )+("." (digit) +)?)( (digit) )*C'." (digit) +)))("E" ("+T-")? (digit)+)?

/* real constant */

yylval.st = (struct Sym tab entry *)install(yytext,0);

return(_RNUM);

. /* string constant */

Create appropriate symbol table entry for the

string, if it is not already created.

retum(_STRING); }

" /* Do Nothing for the Comment */

"0 line++; {/* increment line number */)

[1] ; {/* ignore white spaces */}

%%0
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4. ALGORITHMS FOR SYNTAX ANALYZER

4.1. The Objective

The objective of the syntax analyzer is to parse the user's program using the EPL

grammar. If at the time of parsing any syntax error is found it is reported to the user

along with useful error diagnostics. The parser does not abort the processing in the

event of syntax error. It does error recovery and proceeds to parse the rest of the

user's program, so that more syntax errors can be reported. This reduces the number of

time the user needs to recompile to rectify all the syntax error. If any syntax error is

found then the parser returns '0' to the calling program (the main routine of the EPL

system) to indicate that the processing of the latter phases need not be initiated. If

there is no syntax error found in the user's program then the parser returns '1' to the

calling program to indicate that the parsing has been done successfully, so the later

phases of the system should be initiated.

Besides checking for the syntax errors the parser also builds many of the neces-

sary global data structures which are to be used and modified appropriately by

different parts of the EPL system. The two most important data structures that are built

by the parser are the symbol table and the equation tree. The description of these two

data structures has been given already in the preceding sections. Some parts of some

of these data structures may not be filled during parsing, because of insufficient infor-
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mation available in the user's program at the time of parsing. If the information can be

inferred from other information in the user's program then in some later phase of the

EPL system, by extensive analysis, these attributes are determined and appropriate

places in the data structures are filled. Some examples of these kind of attributes are

data types, dimensions , etc. As mentioned before, EPL grammar allows the user to

use a data item without defining it. In the data type propagation phase of the EPL sys-

tem the type of these undeclared data items are determined (if possible) and the data

type fields of the symbol table entries for these data items are filled in. The dimensions

of many data items also can be left unspecified in an EPL program. The dimensional-

ity propagation phase of the EPL system propagates the dimension from the data items

for which the dimension is known to those for which it is not known.

Besides symbol table and equation trees, the other important global data structures

built by the syntax analyzer which are used by some later phase of the EPL system

includes the Case structures, the Rec case structures, the range definition blocks , list

of data items that has appeared as fields of some input or output file structures, list of

files defined in the user's program, list of sublinear subscripts and the module struc-

ture.

The range definition block, Case structure and Reccase structure has already

been described in detail in an earlier section. List of data items that has appeared as

I
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fields of some input or output file structure is required for the dimension propagation

phase. The dimension propagation starts from this list, because everything in this list

has their dimension correctly defined in the user's program (otherwise it is a semantic

error). The dimension of all the other data items are established from these data items.

The global pointer "io list" points to the head of this list. The global pointer

"topfiles" points to the list of pointers to the symbol table entries that corresponds to

the files declared in the user's program. The global pointer "top_subl_1st" points to

the list of sublinear lists. The module structure contains the information regarding the

program module that are needed for outside communication, especially by the

configurator system. The module structure keeps the name of the program module

being compiled, the type of the module (that is, whether the module is a function or a

procedure), and the range of the program module.

4.2. The Grammar

The parser has been built using YACC. The language that can be parsed using

YACC are of type LALR(1). The EPL language is more complex than LALR(l). For

this reason the EPL specification in EBNF form does not have any direct translation to

the LALR(1). Some changes are made in the grammar specification so that the syntax

analyzer can be written using YACC while at the same time it will be equivalent to
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the EBNF specification for the grammar. Most of the changes made are in the gram-

mar rules. In a few cases more than one character lookahead was needed. Since YACC

does only one character lookahead, when more than one character lookahead is needed

for parsing it is done through the lexical analyzer. These situation arises when "," is

found. The lexical analyzer looks ahead to determine whether "sublinear" or integer

number follows "," or not. If "sublinear" follows "," then it returns the token

" COMSUBL" , if some integer number follows "," then it returns the token

"_COMMABEFOREINUM" (of course, intervening spaces and comments are

ignored). If neither follow "," then the lexical analyzer returns ',' to the syntax

analyzer. In the following the integer values used for representing the tokens and the

LALR(l) grammar used for YACC are shown.

iI
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4.2.1. The integer values used for representing the tokens

YACC assigns the following integer values for the token used in the yacc

specification.

Token Integer Code

# define PROCESS 257
# define FUNCTION 258
# define _SEQUENTIAL 259
# define _INPUT 260
# define OUTPUT 261
# define _DIRECT 262
# define PORT 263
# define _DISPLAY 264
# define ADDRESS 265
# define _FILE 266
# define _WHEN 267
# define _GROUP 268
# define _RECORD 269
# define DOUBLE 270
# define INTEGER 271
# define _CHAR 272
# define _SHORT 273
# define _LOGICAL 274
# define SUBLINEAR 275

# define _REAL 276
# define SUBSCRIPT 277
# define CASE 278
# define OTHERS 279
# define RANGE 280
# define _THEN 281
# define ELSE 282
# define _ENDIF 283
# define _ELSEIF 284

Table 6 Table showing the integer values assigned to the tokens returned by the
lexical analyzer (continued .. ).
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Token Integer Code

# define TRUE 285

# define FALSE 286

# define PROCID 287

# define LAST 288

# define PRESENT 289

# define _OF 290

# define IF 291

# define _SUB 292

# define _NAME 293

# define INUM 294

# define _RELOP 295

# define _RNUM 296

# define _STRING 297

# define _IMPLY 298

# define _REVIMPLY 299

# define IN 300

# define _OUT 301

# define _LONG 302

# define _QUAD 303

# define _DIGIT 304

# define COMMA BEFORE INUM 305

# define _COMSUBL 306

# define CONCAT 307

# define POWER 308

Table 6 (continued) Table showing the integer values assigned to the tokens

returned by the lexical analyzer.
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4.2.2. The LALR(1) grammar used by the YACC for parsing

#include <stdio.h>
#include "symboltable.h"
#include "defn.h"
#include "defnl1.h"
#include "eqtrees.h"
#include "airy grph.h"
#include "rangetab.h"
#include "st manipulator.h"
#include "file-lst.h"
#include "subilIst.h"
#include "routines.h"
#include "itoa.h"
#include "copy name.h"
#include "file-dump.h"
#include "pars-rout.h"
extern. it debug;
extern. it b debug:
struct Sym tab entry *temporary;
struct Case *whflJpj7;

%token <mnum> -PROCESS _FUNCTION -SEQUENTIAL _INPUT
%token <mnum> -DIRECT _PORT _CASE _DOUBLE _INTEGER
%token <mnum> -DISPLAY _ADDRESS _FILE _WHEN _GROUP
%token <mnum> -CHAR _SHORT _LOGICAL _SUB LINEAR _REAL
%token <mnum> -OTHERS _RANGE _THEN _ELSE _ENDIF
%token <mnum> -OUTPUT _SUBSCRIPT _TRUE _FALSE _RELOP
%token <inum> _PROCID _LAST _PRESENT _OF _IF _SUB
%token <mnum> _RNUM -STRING _IMPLY _REVIMPLY _IN
%token <mnum> -NAME _INUM _ELSEIF -RECORD _OUT
%token <mnumf> -LONG _QUAD _DIGIT
%token <mnum> _COM1MABEFOREINUM
%token <mnum> _COMSUBL
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%nonassoc <inum>'-
%left <mnum> '+ ' '- ' TI

%left cinum> W~ TI '&' _CONCAT
%right <inum> -POWER

%type <inum> funcjproc opt fattr fattr porttype type rec

%type <name> format fftag opt minus optE

%type <st> nlist substructure simpstructure

%type <eqt>

%type <rd> opt range range

%type <cs> opt~others when-exp

%type <sp> nlist2 name 1 opt nlist

%union

short sh;
int mnum;
char *name;
struct Sym_tab -entry *st;
struct Range def -bik *rd;
struct Eqtree node *eqt;
struct Rec-case *rc;

struct Case *cs;

struct Stjptr lIist *sp;
struct Parm list *pl;

specification funcproc -:'NAME opt-range sem-col statement

funcjproc _PROCESS
I_-FUNCTION
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statement statement header sem col
I statement declaration sem col
I statement equation semcol
I header semcol
I declaration sem col
I equation sem_.col

header -INPUT ':' nlist
I OUTPUT ':' nlist

nlist nlist ',' NAME
I NAME

declaration : _FILE ':' -NAME optfattr substructurelist

-GROUP ':' -NAME optrange simpstructurelist
type ':' ndxlist

I subscript

ndxlist : _NAME opt range
I ndxlist ',' _NAME optrange

opt fattr • ('fattr par

simpstructure list: simpstructurelist _COMMABEFOREINUM simpstructure

I COMMABEFORE INUM simpstructure
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substructure list :substructure-list COMMABEFOREINUM substructure
I _COMMABEFOREINUM substructure

fattr _SEQUENTIAL

I DIRECT

I-DISPLAY

I PORT
I-PORT

(BEGIN imply; }

portrype
(

BEGIN ordinary;
I

porttype _INPUT _IMPLY _OUTPUT
I OUTPUT _IMPLY _INPUT

type -CHAR

CHAR '(' _INUM par
SHORT
INTEGER

LONG

_REAL
IDOUBLE

I_QUAD
I-LOGICAL

rec RECORD':'
IRECORD INPUT'

I-RECORD _OUTPUT':'

opt_range

{BEGIN imply;
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range

BEGIN ordinary;

bracket

opt others optWH-ENOTHERS ''simps _COM_SUBL -NAME

opt WHENOTHERS _WHEN OTHERS
I-OTHERS

when exp when -exp WYHEN biriexp ':' simps -COMSUBL -NAME

_WHEN binexp ':' simps -COMSUBL -NAME

simps simps -COMMABEFOREINUM simpstructure
simpstructure

substructure keep-num rec -NAME opt-range
caseyproc ('keep_,name par when -exp opt _others
casejproc ('keep name par opt-others
simpstructure

simpstructure -INUM type ':' substr-rest rep
I keep num _ GROUP ':' keep_name opt-range
I keep num keep name opt range
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substr restpart NAME opt range

substr-rest substr-restypart
substr restyPart format

BEGIN ordinary;

substr-rest-rep :substr-rest rep ',' substr rest
Isubstr-rest,

range range ', INUM
range -COMMABEFOREINUM _INUM
Irange',''
I range -COMMABEFOREINUM"i

I range ',' _INUM -IMPLY'*

I range -COMMABEFOREINUM _INUM -IMPLY'i
Irange ',' 'i"' _REV-IMPLY _INUM
I INUM

I INUM -IMPLY'*

"iREVIMPLY _INUM

format paren opt_minus _INUM fflag par
I paren opt-minus '*' fflag par

opt m-nus

fflag '. INUM '+' optE
9:. -INUM optE

I 4'opt-E
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optE

opt E E

subsypart -SUBSCRIPT ''keep name _OF ('prefnilist par

subsjpart2 -SUBSCRIPT ':' -NAME

subscript subsypart subs-rest
I subs~yart
I subsypart2 subs-rest
I subsypart2
I subsypart2 _SUBLLNEAR T( nlist2 par binexp

opt nlist _ OF '(' prefnilist par

prefnlist prefnlist V, prefname
I prefnaxne

nlisQ2 nlist2 V, namelI
InamelI

naniel _NAME '.'-NAME

I_-NAME
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subs-rest subs-rest V, -NAME opt nlist
V -, NAME ($<name>$ = strsave(private-copy); )opt nlist

equation variable '=' expression

variable range_rep varbase
varbase

range__rep range_repi -ADDRESS''

-ADDRESS''
I range repi

range_repi range-rep I LAST opt inuni'.
I range -repI _RANGE opt mnum'.

-RANGE opt mnum .

-~LAST opt mnum''

opt mnum T( -INUM par

varbase prefname index
pref name

prefname _NAME '.'-NAME

IiN '.' -NAME '.' -NAME

I _OUT '.'-_NAME '.'-NAME
INAME
IN N'.' -NAME

I OUT'.' _NAME
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index ''aexp_list bracket

aexpjlst aexpjist ',' aexp
I aexp list -COMMlABEFOREINUM aexp
aexp

expression IF binexp THEN expression elseif rep endif
I IF binexp _THEN expression endif

I _IF binexp _THEN expression elseif-rep

_ELSE expression endif

-IF binexp THEN expression _ELSE expression endif
I-_CASE ''variable par when-rep
1 CASE ' variable par when-rep opt_WI{ENOTHERS ''binexp

I-_CASE ''variable par optWHEN OTHERS ':' binexp
I binexp

elsei~f rep elseif rep _ELSEIF binexp _THEN expression
I _ELSEIF binexp _THEN expression

when-rep when-rep _WHEN binexp ''binexp

I _WHEN binexp ':' binexp

binexp binexp 'T bterni
bterm

bterin bterm '&' bfactor
I bfactor

bfactor strexp _RELOP (relop val =yylval.inum; Istrexp
strexp
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strexp strexp -CONCAT sterm
Isterna

sterm aexp
-_STRING

aexp aexp sign term
I sign term %prec -POWER

term

sign+

term term 'i"' factor

term TI factor
factor

factor factor _ POWER prim
P-' prim
I prim

prim :_-RNUM
IINUM
'(' binexp par

Ifcall
IPROCID
I PRESENT .'varbase

Ivariable
ITRUE
IFALSE
-SUB
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fcall keep_name V( opt binexp list par
keep name '(' par

opt binexp list binexp opt binexp rest

opt binexp rest ''binexp opt binexp_rest

- COMMABEFORE INUM binexp opt binexp rest

endif _ENDIF

bracket''

par

semncol

keep_nurn _[NUM

casejroc -INUM -CASE

paren 9C
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4.2.3. The action routines used in the YACC specification.

The action routines used are in most cases quite complex. Here a simplified very

high level description of the action routines is given. For more details please see the

appendix. The action routines are placed in the proper places within the YACC

specification. The description given here is not complete and somewhat ambiguous. It

is written that way to keep the description short and simple. The basic approach

towards solving different situations is focused upon. Following is the description of the

action routines used in the YACC specification.

#include <stdio.h>
#include "symboltable.h"
#include "defn.h"
#include "defnl.h"
#include "eqtrees.h"
#include "arry grph.h"
#include "rangetab.h"
#include "st-manipulator.h"
#include "file lst.h"
#include "subl lst.h"
#include "routines.h"
#include "itoa.h"
#include "copyname.h"
#include "file dump.h"
#include "parsrout.h"
extern int debug;
extern int b-debug;
struct Sym_tabentry *temporary;
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struct Case *whn-Jtr

%token <inum> PROCESS _FUNCTION SEQUENTIAL _INPUT
%token <mnum> -DIRECT _ PORT -CASE -DOUBLE _ITEGER
%token <num:> -DISPLAY -ADDRESS _FILE _WHEN _GROUP
%token <inum> -CHAR _SHORT _LOGICAL _SUBLINEAR -REAL
%token <inum> -OTHERS _RANGE _THEN _ELSE _ENDIF
%token <inum> -OUTPUT _SUBSCRIPT _TRUE _FALSE _RELOP
%token <inum> PROCID _LAST _PRESENT _OF _IF _SUB
%token <inum> -RNUM -STRING _IMPLY _REVIMPLY _IN
%token <inum> -NAME _INUM _ELSEIF -RECORD _OUT
%token <inum> -LONG _QUAD _DIGIT
%token <inum> _COMMABEFOREINUM
%token <inum> -COMSUBL

%nonassoc <inum>''
%left <inum> '+' '- ' tr

%left <inum> '*' TI '&' _CONCAT
%right <mnum> -POWER

%type <inum> funcjproc opt fattr fattr porttype type rec

%type <name> format fflag opt_minus opt_E

%type <st> nlist substructure simpstructure

%type <eqt>

%type <rd> opt range range

%type <cs> opt others when exp

%type <sp> nlist2 namel opt nlist

%union

short sh;
int inum;
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char *name;
struct Sym tab entry *st;
struct Range def blk *rd;
struct Eqtreenode *eqt;
struct Rec case *rc;
struct Case *cs;

struct Stjtrlist *sp;
struct Parm-list *pl;
I

%%

specification func_proc ':' NAME optrange semcol
{

Create the module structure for the program module.
create a new entry for the symbol PROCESS (PROCESS

is the name of the interim file).
Set the global variables as

under-file = 0;
porttype = 2;

statement

If debug flag is set then call the following routines:
printfilesO;

print_sublO;
printdefO;
print_iolO;
print_stO;
print all eqjtreeso;

funcjproc • _PROCESS
I FUNCTION

statement : statement header sem col
I statement declaration sem col

I statement equation semcol
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I header ser col
I declaration sem col
I equation semcol

header _INPUT ':' nlist
I _OUTPUT ':' nlist

nlist nlist ',' _NAME

Create the file list (if it is not yen created) and
install the symbol (the file names) in the file list

if it is not yet installed. Check for possible
redefinition. Also create the symbol table entries
for these symbols and fill the type_of.use,
io_flags.input and ioflags.output fields of the
symbol table entry.
}

I-NAME
{

Do the same thing as done for the previous grammer rule.
}

declaration _FILE ':' NAME
I

Create a symbol table entry for the file name if it
is not already created. Check for redeclaration. Set

under file = I;
to indicate that all the substructures now belongs to

a file structures and not to the interim file PROCESS.

Insert the symbol table entry of the file in the

Relationq table.
s

opt fattr substructure list

{
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Fill up different fields of the symbol table entry

for the file, By now the table relationq are filled

so call
insertrelations0;

to insert the relationship of all the data items that

belongs to the file among each other.

If it is a DIRECT or a simple PORT file (i.e., without
IN => OUT or OUT => IN) then make two identical copy

of the same file. One of these is of type output.
The name of all the data items (including the file name)

of the output file are prefixed with "OUT".

If it is a PORT file with IN => OUT or OUT => IN then

there are always exactly two record structures defined
under the file structure definition. One is for the

input "RECORD INPUT" and the other is for "RECORD OUTPUT"
In this case create two file structures, one for the
input and the other for the output. The input file has

only one record, the input record, with its record
structure.

The output file has also one record , the output record,
with its record structure. Moreover, prefix the name of

all entries that belongs to this output file with "OUT".

While doing all these check for possible semantic errors.

I _GROUP':' -NAME optrange

Create a symbol table entry for the group name and fill
in as many fields of that entry as possible. Insert a

pointer to the symbol table entry in the beginning

of the relation_q array. The group entry along
with all the data items that belongs to this group are

made part of the interim file.

i
simpstructure list
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Call the routine

insertrelationsO;
to insert the sibling, child , parent relationship for

all the data items that belongs to the group. Call the

routine

actualinsert(pointer to the
symbol table of the group);

to insert the I/O information and filetype information

of all the entries under the group.

type ':' ndxlist

Have the inherited attribute pass down the parse tree

of the non-terminal "ndxlist".
)

I subscript

ndxlist -NAME
{

create symbol table entry for the name and make it a

childs of the interim file. Fill some of the fields

of this entry as per information available.
}

opt range
{

Set the range and dimensionality field of the symbol
table entry.

ndxlist ',' NAME opt range

Do similar thing as done for the previous grammer rule.

opt fattr '(' fattr par



I U El, i I .I ! a

-108-

{
pass the synthesized attribute (the file type
information) up the parse tree.

- same as for the previous rule)

simpstructure list: simpstructurelist _COMMABEFOREINUM simpstructure
I COMMABEFOREINUM simpstructure

substructure-list: substructure list COMMA BEFOREINUM substructure
ICOMMA BEFORE INUM substructure

fatr : SEQUENTIAL
{ Pass the file type information up the parse tree )

I DIRECT ( same )
I DISPLAY I same I
I PORT (same)
I PORT (same)

(BEGIN imply;)
porttype

BEGIN ordinary;
Pass the file type information up the parse tree.

porttype : _INPUT _IMPLY _OUTPUT
f Pass the file type information up the parse tree

-OUTPUT _IMPLY INPUT
Pass the file type information up the parse tree

type _CHAR
( Pass the file type information up the parse tree

_CHAR '(' _INUM par { Same)
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I SHORT (Same)
I INTEGER { Same)

I LONG (Same)
I REAL (Same)
I _DOUBLE (Same )
I _QUAD (Same )
I -LOGICAL (Same )

rec -RECORD':'
( Pass the file type information up the parse tree }

IRECORD INPUT ':' ( same )
I-RECORD _OUTPUT':' { same)

opt range • [9
(

BEGIN imply;
dimensionality = 0;
}

range

BEGIN ordinary;
)

bracket

optothers opt WHENOTHERS "' simps _COM_SUBL _NAME
{

Create the Case structure and fill in all the fields of
that structure with appropriate values.

Adjust the top_subllist.

R

{
Return NULL to indicate that no case structure has been
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created.
}

opt_WHENOTHERS _WHEN _OTHERS
I-OTHERS

when.exp when.exp _WHEN binexp ':' simps COMSUBL _NAME

Create the Case structure and fill in all the fields of
that structure with appropriate values.

Adjust the top subl list.

I _WHEN binexp ':' simps _COM SUBL _NAME
I

Same as for the previous grammer rule.

simps simps _COMMABEFOREINUM simpstructure
I simpstructure

substructure keep...num rec -NAME optrange
{

Create a symbol table entry for the record entry and
insert inthe relationmq. Fill in the fields of the entry.

Set range and dimensionality field and set the dim_proc
flag to 1.

}
I caseproc '(' keep-name par whenexp optothers

{
Install a new symbol table entry for the CASE. Fill
its fields and adjust the relationq table for correct
insertion of the relations.
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I case_proc '(' keepname par opt-others
{(

Similar as done for the previous grammer rule.

I simpstructure

simpstructure :INUM type ':' substrrestrep
I keepnun _GROUP ':' keepname optrange

{
Insert the name in the symbol table and fill its

different fields. Adjust the relationq table.
I

I keepnum keepname opt-range
I

Same as for the previous rule.

substr-restpart -NAME optrange
I

similar as the previous grammer rule.

substrrest substr rest_part
I substrrest_part format

{
BEGIN ordinary;

}

substrrestrep : substrrest rep ',' substrrest
I substr rest

range range ',' INUM
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Create range def blk and fill in the is-static, ceiling

and next fields of it. Count the dimensionality.
)

I range _COMMABEFOREINUM _INUM
I

Similar as the previous grammer rule.
I

range ',' '*' { same

I range COMMA BEFOREINUM '*' (same)

Irange ',' INUM -IMPLY 1*' ( same )
I range _COMMABEFOREINUM _INUM _IMPLY '*' (same)
range ',' '*' _REVIMPLY _INUM { same

INUM ( same)
* (same )
INUM IMPLY'*' (same)

'*' REVIMPLY INUM (same)

format paren opt_minus _INUM fflag par
(

Retrieve the format string and store in a safe place.
I

I paren opt-minus '*' fflag par
(

Retrieve the format string and store in a safe place.
I

opt-minus

fflag '' INUM '+' optE
'.' _INUM opt_E

I'+' optE
I opt_E

IIOR
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optE'E

subs~part -SUBSCRIPT ''keep name _OF V( prefnilist par

Install the subscript entry in the symbol table.

subsjpart2 -SUBSCRIPT ':' -NAME

Install the subscript entry in the symbol table.

subscript subsjpart subs-rest
I subsjpart
I subs~part2 subs-rest
I subsypart2
I subsypart2 _SUBLINEAR '(' nlist2 par binexp

Install the sublinear subscript in the symbol table
and add it in the sublinear list.

opt_nlist -OF '(' prefnilist par

prefnlist prefnlist ',' prefname

Make a list of all the names that can be referred to by
the subscript (it may include two copy for a single
name if the name has two entries in the symbol table for
input and output).
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}
I prefname

(
Similar as before.

I

nlist2 nlist2 ',' name l
(

Make a list of the symbol table entries referred and
pass a pointer to the head of the list up the parse tree.

}
I namel

I
Do similar thing.

}

namel : NAME '.' NAME

Return a pointer to the appropriate entry of the symbol
table. Install a new entry if the entry is not already
there.
}

-NAME
I

Do similar thing.
}

subsrest subs-rest ',' -NAME optiilist

Create a symbol table entry for the subscript.
I

',' _NAME ($<name>$ = strsave(private copy); } opt_nlist

C
Create a symbol table entry for the subscript.

}
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equation variable '=' expression
{

Change the typeof use field of the appropriate symbol
table entry.
Create an equation tree node with label ASSERTION and
fill in its other fields appropriately.
Check for multiple definition of the variable. If there
is a multiple definition then adjust the pointers of the
involved equations as required.

I

variable rangerep varbase
I

Maintain a stack for keeping the range, last, address
and present information. Report stack error if found.
Create appropriate RANGE, LAST, PRESENT or ADDRESS
entry if needed and if they are not already found
in the symbol table. Have the otherpointer fields

of all these symbol table entries appropriately
linked.
Return a pointer to the appropriate symbol table entry
for use in the equation tree.

I

I varbase
(

Pop the stack.
I

range rep range-repl _ADDRESS '.'

Indicate that the ADDRESS is found.
)
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I ADDRESS'.'
{ Same as before. }

I range rep1

range repl rangerepl -LAST optinum '.'

Increment rangecounter or lastcounter as appropriate
by the value returned by the optinum.

}
I range rep 1 _RANGE optinum '.'

I
Increment the range-counter by the value returned by
opt inum.

I
I _RANGE opt-inum '.'

Set range-counter to the value returned by optinum.

I LAST opt inum '.'
I

Set last counter to the value returned by opt-inum.

optinum '(' _INUM par

Return the value of the _INUM.

I { Return 1. I

varbase prefname

push(rangecounter,lastcounter,is address);
range-counter = last-counter = is-address = 0;

index

- - • k
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f
Adjust the pointers of the equation tree nodes as

required.
}

I prefname
(

Similar action as for the previous rule.
I

prefname _NAME '.' NAME
(

INOUT = 0;

Set st-ptr to the symbol table entry for the variable.

Call the routine pref 1()
I

-IN '.' _NAME '.' _NAME
(
INOUT = 1;
Rest same as before.

I
I _OUT '.' _NAME '.' NAME

f
INOUT = 2;
Rest same as before.

}
I-NAME

f
IN OUT = 0;

Rest same as before.
I

I IN'.' NAME

INOUT = 1;
Rest same as before.

I
I OUT'.' _NAME

I
INOUT =2;
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Rest same as before.

index '[' aexp List bracket

aexplist aexp list ',' aexp
I

Create appropriate equation tree nodes (as described in
the Global data structure section) and link them.
}

I aexp_list _COMMABEFOREINUM aexp
(

Similar as before.
}

I aexp
(

Similar as before.
I

expression _IF binexp _THEN expression elseif-rep endif
I _IF binexp THEN expression endif

I _IF binexp _THEN expression elseifrep _ELSE expression endif

I IF binexp THEN expression _ELSE expression endif
(

For each of the above rule create a equation tree node

and fill its different fields appropriately.

ICASE '(' variable par when-rep

Create an appropriate CASEEXP equation tree node.

ICASE '(' variable par whenrep opt_WHENOTERS '" binexp

Create appropriate OTHERACTION and CASEEXP

equation tree node and link them.
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)
I CASE '(' variable par opt_WHENOTHERS ':' binexp

I
Create an appropriate CASEEXP and OTHERACTION
equation tree node and link them.

I
I binexp

elseif rep elseif._rep _ELSEIF binexp _THEN expression
I _ELSEIF binexp THEN expression

{
For each of the above rule, create appropriate
IFACTION and IFEXP nodes and link them properly.

I

when-rep when-rep _WHEN binexp ':' binexp
I WHEN binexp ':' binexp

I
For each of the above rule, create appropriate
WHENACTION and WHENTEST nodes and link them properly.

I

binexp binexp '[ bterm

Create an appropriate BINARYOR equation tree node.

I bterm

bterm bterm '&' bfactor
I

Create an appropriate BINARYAND equation tree node.

}
I bfactor
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bfactor strexp _RELOP (relop val = yylval.inum; } strexp
(

Create an appropriate equation tree node with label

BINARY-EQ, BINARYGE, BINARYLE, BINARYNE, BINARYGT,

or BINARYLT depending on the value of the relop-val.
I

I strexp

strexp strexp _CONCAT sterm
I

Create an appropriate BINARYCONCAT equation tree node.
}

I stern

sterm aexp
-STRING

[
Create an appropriate LITERAL equation tree node.

}

aexp aexp sign term
(

Create an appropriate BINARYPLUS or BINARYMINUS
equation tree node depending on the "sign".

}
I sign term %prec _POWER

{
Create an appropriate UNARY PLUS or UNARYMINUS
equation tree node depending on the "sign".

}
I term

sign
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term term '' factor
(

Create an appropriate BINARYTIMES equation tree node.
)

I term '' factor
t

Create an appropriate BINARYDIVIDE equation tree node.

I factor

factor factor _POWER prim
(

Create an appropriate BINARYPOWER equation tree node.
)

I'~' prim
(

Create an appropriate UNARYNOT equation tree node.

prim

prim _RNUM
{

Create an appropriate LITERAL equation tree node.
Set the type of the symbol table entry for the real
number to REAL.

I

IINUM
I

Create an appropriate LITERAL equation tree node.
Set the type of the symbol table entry for the integer
number to INTEGER.

I

'( binexp par
I fcall
I PROCID

(
Create an appropriate LITERAL equation tree node.

-I
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)
I _PRESENT '.' varbase

(
Create an appropriate symbol table entry if required
for the symbol PRESENT whose otherpointers field
points to the symbol table entry for "varbase".

I variable
I TRUE

(
Create a symbol table entry for the symbol TRUE if it
is not already present in the symbol table.
Create an appropriate LITERAL equation tree node.

-FALSE
m(

Create a symbol table entry for the symbol FALSE if it
is not already present in the symbol table.
Create an appropriate LITERAL equation tree node.

}
I SUB

I
Create a symbol table entry for the unique symbol
created by the lexical analyzer using the itoa routine
for this purpose. The symbol is for a subscript.
Create an appropriate LITERAL equation tree node.

I

fcall keepname '(' opt_binexpist par
[keepname 9(, par

For both of the above rules:
create an appropriate FCALL equation tree node.

I

optbinexp_list • binexp optbinexp rest

Create an appropriate PARMS equation tree node.
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optbinexprest ',' binexp opt_binexp_rest
ICOMMABEFORE INUM binexp opt binexprest1I

For bothe of the above rules
create an appropriate PARMS equation tree node.
}

endif _ENDIF

bracket ']'

par

semcol

keep._num _INUM

case_proc • INUM _CASE
{

Create a new symbol table entry for the symbol CASE.
Add this entry to the case record list. The head of
this list is pointed to by case rec list head.
Add this entry appropriately to the relation q.

paren
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%%

4.2.4. The routines used in the Syntax Analyzer

The syntax analyzer uses several routines. In this section the purpose and the cal-

ling format of these routines are described. The algorithms are not given, but the actual

source codes can be found in the appendix.

4.2.4.1. hash

Routine name: hash

File name : source/stmanipulator.h

Routine type: integer function.

Author: Balaram Sinharoy

Calling Format: hash (s)

Arguments:

char *s -- The Symbol name.

Calling routines: yyparse,lookup

Global variable/structures used:
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HASHSIZE
Symtabentry

Purpose:

This routine returns the bucket (out of 101 buckets) in which the symbol "s" will
be placed.

Example:

The call hash ("our") will return 39 indicating that the entry for the symbol "our"
is to made in the bucket 39.

Algorithm:

Input: A pointer to a character string for denoting the name of a symbol.

Output: An integer in between 0 and 100 which denoted the bucket in which
symbol belongs.

Add all the characters (the integer values of their representation) in the string.
Divide the sum by the constant HASHSIZE (which in our case is 100) and return

the remainder.

4.2.4.2. strsave

Routine name: strsave
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File name source/st manipulator.h

Routine type: char function.

Author: Balaram Sinharoy

Calling Format: strsave (s)

Arguments:

char *s -- The Symbol name.

Calling routines: yyparse,do install,install

Global variable/structures used:

None.

Purpose:

This routine will allocate a new location for the symbol name pointed to by s and
return a pointer to this location to the calling routine.

4.2.4.3. lookup

Routine name: lookup

File name : source/stmanipulator.h

Routine type: struct Sym_tabentry
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Author: Balaram Sinharoy

Calling Format: lookup (s)

Arguments:

char *s -- The Symbol name.

Calling routines: yyparse, install

Global variable/structures used:

PrI struct

Sym tab entry

Purpose:

The purpose of this routine is to lookup for the entry of the symbol "s" in the
symbol table. It first calls the routine hash to find out in which bucket the symbol

belongs to. Then it searches along the bucket to find out the first entry of that symbol

in that bucket.

Example:

lookup ("our") will return a pointer to a symbol table entry in the bucket 39.

Algorithm:

Input : A pointer to a character string "s" which denotes a symbol.

Output: A pointer to a symbol table entry if the entry is already there
in the symbol table else it returns NULL.

il l li iil l l ll I I I imlli{
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I = hash(s)

Search through the link list of the symbols in the I-th bucket of the symbol table to

find out the first entry in the bucket that has the same symbol name.

If such an entry is found in the symbol table then return a pointer to that entry of the

symbol table else return NULL

------------------------------------------ --------------

4.2.4.4. do conditional install

Routine name: do-conditional install

File name : source/stmanipulator.h

Routine type: struct Sym_tab_entry

Author: Balaran Sinharoy

Calling Format: do conditional install (st_ptr,symbol,np,nd,type)

Arguments:

char *symbol -- The Symbol name.

st_ptrnp -- Symtab entry

int type
nd -- Prl struct

Calling routines: install
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Global variable/structures used:

Prl struct
Sym tab entry

Purpose:

This routine goes through the appropriate bucket and tries to find an entry in the
symbol table that has the same name (a character string) and whose otherpointers
points to the entry pointed to by the argument st_ptr. This routine is called from the
routine install. When the I flag in install is set to 4,5,6 or 7, entry for RANGE,
ADDRESS,PRESENT or LAST is searched accordingly.

4.2.4.5. do install

Routine name: do install

File name : source/stmanipulator.h

Routine type: struct Sym tab entry

Author: Balaram Sinharoy

Calling Format: do install(symbolname)

Arguments:

char *symbol-name -- The Symbol name.

Calling routines: yyparse,install
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Global variable/structures used:

brn.ptr
Prlistruct
Sym_tab.entry

Purpose:

The purpose of this routine is to actually install the symbol name symbol name.
When called it creates a new entry in the symbol table allocating space for it, for the
symbol name pointed to by the pointer symbol_name.

4.2.4.6. install

Routine name: install

File name : source/st manipulator.h

Routine type: struct Sym tab entry

Author: Balaramn Sinharoy

Calling Format: install (symbolname, 1)

Arguments:

char *symbolname -- The Symbol name.

int I -- A switch to determine which type of entry we are
looking for.

_e
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Calling routines: yyparse

Global variable/structures used:

Prl struct
Symtab entry
alreadyinstalled, installalways.
last-st_ptr,address st_ptr,present-stptr,range_st_ptr

Purpose:

The primary purpose of this routine is to lookup for the entry of the symbol
"symbolname" in the symbol table. If the entry is not found then a new symbol table
entry in the appropriate bucket will be made. The searching for the symbol-name is
directed by the flag I.

Depending on the value of I the search is done:

I = 0: The first entry in the bucket that has the same name is
returned, if there is no entry found then it creates another
entry and returns a pointer tio that entry.

I = 1: An entry which belongs to the file that has a name same as
the name pointed to by filename is found out, if such an
entry is not found then another entry is created.

I = 2: Find an entry with the name symbolname and which is a FILE.

I = 3: Find an entry symbol-name which is a SUBSCRIPT.

I = 4: Find out the entry in the symbol table which is a RANGE and
whose otherpointers pointer points to the appropriate
symbol table entry.

I = 5: Find out the entry in the symbol table entry which is a ADDRESS
and whose otherointers pointer points to the apprpriate
symbol table entry.

I = 6: Find out the entry in the symbol table entry which is a PRESENT
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and whose other.pointers pointer points to the apprpriate
symbol table entry.

I = 7: Find out the entry in the symbol table entry which is a LAST
and whose other-pointers pointer points to the apprpriate
symbol table entry.

I = 8: Find the symbol table entry which is a function name.

I = 9: If the use of a variable occurs before its declaration then
that variable is already in the symbol table and so we have
to refer to that place. Looking through the bucket find out
the entry that has the same name and which does not have any
parent, which means that it is not attached to any
structure

Example:

lookup ("our" ,0) will return a pointer to the first symbol table entry in the bucket
39. If it is found that there is no entry in that bucket then it will make a new entry for
"our" in the symbol table.

Algorithm:

Input: A pointer "symbolname" to a character string denoting a symbol name

and an integer "I" which dictates how the search and installation of
the symbol name will be done. A global variable "install-always" is used
which is "I" to indicate that the symbol name is to be installed no
matter what is the value of "I".

Output: A pointer to the symbol table entry , which may be created by this
algorithm or which may have been already present in the symbol table.
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A global variable "already installed" is set to "1" if the particular
variable which is represented by the symbol (it is to be noted here that
many variable may be represented by the same symbol) is already found
in the symbol table.

m(

np = lookup (symbol name);
already installed = 1;
if (install always - 1)

install the symbol in the symbol table by calling the function "do-install"
else

do the following depending on the value of "I"

I =0:

if ("np" points to an entry of a string)
search the rest of the current bucket for another entry
of the same symbol which is not a string.

if no such entry is found
call do-install(symbolname);

I=1:
If (np == NULL)

call doinstall(symbolname);
else

while ("np" does not point to the symbol name "symbol_name" I "np"
does not belong to the file "filename");

/* filename is a global variable pointing to a character string
for a filename */

(
np = np->next;
if (np == NULL)

break;

if (np == NULL)
np = doinstall(symbolname);

I = 2:
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while ("np" does not point to the symbol name "symbol-name" I
"fnp" is not an entry for a FILE)

np = np->next;
if (np = NULL)

break;

if (np == NULL)
np = doinstall(symbol-name);

I = 3:
while ("np" does not point to the symbol name "symbol namne" I

finp" is not an entry for a SUBSCRIPT)

np = np->next;
if (np == NULL)

break;

if (np == NULL)
np = do-install(symbol-name);

I = 4:

np = docniinlisalrnes~t~yblnm~pnAG)

I = 5:
np-do conditional install(address st~tr,symbol-name,np,nd,ADDRESS);

I = 6:

np=do-conditional install(present-st~tr,symbol_name,np,nd,PRESENT);

I = 7:
np = do _conditional install(last-stjtr,symbol_name,np,nd,LAST);

I = 8:
while ("np' does not point to the symbol name "symbol_flame" I

"np" is not an entry for a FUNCTION)

np = np->next;
if (np == NULL)
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break;

if (np, == NULL)

np = doinstall(symbol-name);
np->type of use = FUNCTON;

1 9:
while("np" does not point to the symbol name "symbol -name"I

"nip" has a parent I "nip" is an entry for a string)

np = np->next;
if (np = NULL) break;

4.2.4.7. itoa

Routine name: itoa

File name : source/itoa.h

Routine type: a pointer to a character string.

Author: Balaramn Sinharoy

Calling Format: itoa(inum)

Arguments:

mnum -- integer
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Calling routines: lex.yy.c

Global variable/structures used:

None.

Purpose:

This routine returns a pointer to a character string that contains the character string for
the integer inum. This is used for appending the integer (in character) with the SUB.

Example:

itoa(23) will return a pointer to the character string "23".

4.2.4.8. insert-relations

Routine name: insert-relations

File name : source/routines.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: insert relationsO

Arguments:
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None.

Calling routines: yyparse

Global variable/structures used:

filetype
relation_qO
io inf
ioinf2
PrI struct
Sym tab entry

Purpose:

Before calling the routine insert relations the table relationq has been filled by
the yyparse. The first entry in the relation_q is the filename. Each entry in the
relationq table has two parts. The first part contains a pointer to the symbol table
entry and the second part contains the integer that has been found in front of the sym-
bol name in the definition of the file in which the name has been found. To seperate
the WHENs in the CASES number 0 is used. To indicate the end of definition of case
the integer -2 has been used.

Given with this table this routine inserts all the relations (i.e. it fills the entries for
the parent sibling and old child filds for all the variables that has been found in the
definition of that file).

Example:

For the file declaration:

file: commands,
10 rec: inrec[*1,

20 char(2): code,
20 case(code)

when single: 30 int: argl, sublin jl
when 'MV' : 30 int: arg2l,

30 int: arg22, sublin j2;
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The content of the relationq is:

commands 0
inrec 10
code 20
CASE 20
argl 30
0

arg2l 30
arg22 30
0
-2

The corresponding entries in the symbol table are:

This is an entry in the 42 bucket

Entry is made for the symbol: commands
Parent: NULL
Oldest child : inrec
next sibling : NULL
type of use: File
file type : Sequential
type : yet unknown or the entry is not for a field
1/O flags :010 00000
Dimensionality : 0
Otherjpointers is NULL
Range : NULL

This is an entry in the 24 bucket:

Entry is made for the symbol: inrec
PNrent : commands
Oldest child : code
next sibling : NULL
type of use: Record
file type : Sequential
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type yet unknown or the entry is not for a field

I/O flags :010 00010
Dimensionality : I
Otherjpointers is NULL

Range : Following are the ranges defined --

is static: 0, ceiling: 0, type

This is an entry in the 7 bucket

Entry is made for the symbol: code
Parent : inrec
oldest child : NULL
Next sibling: CASE
type of use: Field
file type : Sequential
type : char(2)
1/0 flags :010 00000
Dimensionality : 0
Otherjpointers is NULL
Range : NULL

This is an entry in the 82 bucket

Entry is made for the symbol: CASE
Parent: NULL

oldest child : NULL
next sibling : NULL
type of use: Undef 0
file type : Sequential
type • yet unknown or the entry is not for a field
I/0 flags : 010 01000
Dimensionality : 0
Other.ointers points to the rec case entry for code
Range: NULL
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This is an entry in the 60 bucket

Entry is made for the symbol: argI

Parent : CASE

oldest child • NULL

next sibling : NULL
type of use: Field

file type • Sequential
type : integer

1/0 flags : 010 00000
Dimensionality : 0

Otherjointers is NULL

Range : NULL

This is an entry in the 9 bucke,

Entry is made for the symbol: arg2l

Parent: NULL

oldest child : NULL
Next sibling : arg22

type of use: Field
file type : Sequential

type : integer

1/0 flags :010 00000

Dimensionality : 0

Otherjpointers is NULL

Range : NULL

This is an entry in the 10 bucket

Entry is made for the symbol: arg22

Parent: NULL

oldest child : NULL
next sibling : NULL

type of use: Field
file type : Sequential

2
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type : integer
IVO flags :010 00000
Dimensionality : 0
Otherpointers is NULL
Range : NULL

4.2.4.9. insert_parent

Routine name: insert_parent

File name : source/copy_name.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: insert-Parent (oldest_child)

Arguments:

oldestchild -- pointer to symbol table entry.

Calling routines: copyfile

Global variable/structures used:

None.

Purpose:

This routine will insert the parent of all the entries which are sibling of other entries
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and the oldest of them have their parent defined. This also works recursively.

---------------------------------------------------------------------------

4.2.4.10. insert io

Routine name: insert io

File name : source/routines.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: insertioO

Arguments:

None

Calling routines: yyparse

Global variable/structures used:

io inf -- contains the information for ioflags.isinput
io_inf2 -- contains the inforrmation for io_flags.isoutput

Purpose:

This routine inserts all the IO information for all the nodes in the symbol table, It
starts from the file list, and assuming that the file name has correct I/O information it
goes through all the entries that belongs to this tree and inserts the correct 1/0 infor-
mation.
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4.2.4.11. io-entry

Routine name: io.entry

File name : source/routines.h

Routine type: integer function.

Author: Balaram Sinharoy

Calling Format: io-entry (st_ptr)

Arguments:

st_ptr -- a pointer to the symbol table.

Calling routines: yyparse

Global variable/structures used:

None.

Purpose:

This routine is used to determine the I/O information that the entry stptr is going
to get. The call to this routine is very rare. In those occassions when we need to know
the I/0 information lyfore we have inserted it by calling io insert explicitly we call
this routine. This routine finds out the I/O information by finding the file in which it
belongs, if the I/0 information is not already found in the entry for that symbol.
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4.2.4.12. add dimn

Routine name: adddimn(st_ptr)

File name : source/routines.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: adddimn(st_ptr)

Arguments:

st_ptr -- pointer to symbol table entry.

Calling routines: correctdimn

Global variable/structures used:

None

Purpose:

This routine does the actual addition. This routine also calls itself recursively to do the

addition successively for all the entries that belongs to the subtree rooted at -t_ptr.

4.2.4.13. correct dimn
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Routine name: correct dimn

File name : source/routines.h

Routine type: integer function.

Author: Balaram Sinharoy

Calling Format: correct dimn

Arguments:

None.

Calling routines: yyparse

Global variable/structures used:

files_ptr,top_ptr -- pointers to Files

Purpose:

The routine correctdimn does the dimensionality correction at the end of parsing. The
dimensionality that has been inserted in the place of the corresponding field is what it
was defined in the specification of the program. The correct dimensionalty of a vari-
able is the sum of the dimensionality of its and all of its predecessor and this is true
for all the descendent of a file. In this routine starting from the first direct descendent
of file we add the dimensionality information of the parent to all of its children.

Example:

For the declaration:

file : a (direct),
10 rec : our [*],

20 int : c[*,7,*], d[8,9];
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the dimensionalities that will be found after the parsing are:

our--1;

c -- 4;

d -- 3;

4.2.4.14. pop

Routine name: pop

File name : source/routines.h

Routine type: void function.

Author: Balaran Sinharoy

Calling Format: popo

Arguments:

None.

Calling routines: yyparse

Global variable/structures used:

stack-counter, stack[]
range_counter,last counter,isaddress

Purpose:

II I - | I | i'+ p



- 147 -

This routine pops the value of the rangecounter ,is_address, lastcounter from the

stack. This popped values are the current values for the variable that is being pro-

cessed currently and the corresponding range , address and last information are stored

in the symbol table by creating appropriate last, range and address entries in the sym-

bol table.

------------------------------------------------- ---------

4.2.4.15. push

Routine name: push

File name : source/routines.h

Routine type: void function.

Author: Balaram Sinharoy

Calling Format: push(range,last,addr)

Arguments:

range,last,addr -- integer

Calling routines: yyparse

Global variable/structures used:

stackcounter, stack[]

Purpose:

This routine pushes the range,addr and last infomation that associates with the
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"prefnare" in the stack and adjusts the stack counter for later retrieval.

--------------------------------------------------- --------

4.2.4.16. get-node

Routine name: get_node

File name : source/routines.h

Routine type: void

Author: Balaramn Sinharoy

Calling Format: get-node (label,leftright,parent,type,left type)

Arguments:

label,type,lefttype -- integer
left -- can be pointer to Sym tabentry or Eq_tab entry

parent,right -- pointer to Eqtab.entry

Calling routines: yyparse

Global variable/structures used:

None

Purpose:

This routine creates a new entry in the in the equation tree whose label is "label"
left child is "left", right child is "right", parent is "parent",and which is of type "type".
left type is used as a flag to indicate that the left child is a symbol table pointer (when
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lefttype is 1) or a pointer to equation tree (when lefttype is 0).

4.2.4.17. copyentry

Routine name: copyentry

File name : source/copy_name.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: copy_entry (ptr)

Arguments:

ptr -- pointer to symbol table entry.

Calling routines: yyparse,copyjfile

Global variable/structures used:

None.

Purpose:

This routine copies all the entries that belong to the subtree pointed to by ptr into a

seperate place. While copying it will find the appropriate loose variable (i.e., not
attached to any file structure) with compatible I/O information whenever possible.If ptr
is NULL then it does nothing. It also calls recursively to copy all the variables that is
descendent of ptr.
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4.2.4.18. copy file

Routine name: copy-file

File name : source/copy name.h

Routine type: a pointer to a character string.

Author: Balaramn Sinharoy

Calling Format: copy_file (parent)

Arguments:

parent -- pointer to Sym_tab-entry

Calling routines: yyparse,create-duplicate-file

Global variable/structures used:

None.

Purpose:

This routine will make a duplicate copy of the file pointed to by parent. While copying

it will make a scan through the symbol table to find whether any more of the loose
variables can also be attached to the same file. For that purpose it goes through the I

bucket in which it is supposed to belong and tries to find the loose variable (that is, a

variable which is the same as the variable whose copy we are making , only that it has
different 1/0 information.



- 151 -

4.2.4.19. dump

Routine name: dump

File name : source/copy name.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: dump(ptrl,ptr2)

Arguments:

ptrl,ptr2 -- pointer to symbol table entry.

Calling routines: yyparse,copy_file

Global variable/structures used:

None.

Purpose:

This routine dumps all the fields of the entry pointed to by ptrl into the fields of the
entry pointed to by the pointer ptr2.
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4.2.4.20. changeout-name

Routine name: change out name

File name : source/routines.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: change out name 0

Arguments:

None.

Calling routines: yyparse

Global variable/structures used:

top files is referenced to know the list of files.

Purpose:

This function will change the name of all those PORT files
which are output (in this case there are two copies of the same
file in the symboltable. One copy is for the input and the other c
copy is for the output. Before this routine is called (this
routine is called only when the parser has completed its task)
the name of this input and the output file is the same, after
this routine is called the name of all the entries in the
output file (only for the above kind of otuput files are
treated here) will be prefixed by OUT_.
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4.2.4.21. recchange nane

Routine name: rec change name

File name : source/routines.h

Routine type: void function.

Author: Balaram Sinharoy

Calling Format: rec-change name (symbol)

Arguments:

symbol -- a pointer to the symbol table.

Calling routines: changeoutname

Global variable/structures used:

None.

Purpose:

This routine recursively goes through all the symbol table entries that belongs to the
subtree rooted at "symbol" and changes their symbol name by prefixing the existing
name with "OUT ". This routine calls itself recursively.
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4.2.4.22. print files

Routine name: printfiles

File name : source/file-dump.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: print-files 0

Arguments:

None.

Calling routines: yyparse

Global variable/structures used:

None.

Purpose:

This routine will dump the files that has been declared in the program. Since at the
time of insertion a new file name was inserted on top of another old name that are
there already in the list (and so it is a stack) so the print out will be in the reverse
order.
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4.2.4.23. printrel

Routine name: printrel

File name : source/routines.h

Routine type: void

Author: Balaram Sinharoy

Calling Format: print.rel (s)

Arguments:

char *s -- The Symbol name.

Calling routines: yyparse

Global variable/structures used:

None

Purpose:

This routine prints the entries of the relationq that corresponds for the file pointed
to by s.

4.2.4.24. print subi
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Routine name: print subl

File name : source/file dump.h

Routine type: void function

Author: Balaran Sinharoy

Calling Format: print subl 0

Arguments:

None.

Calling routines: yyparse

Global variable/structures used:

None.

Purpose:

The routine print subl prints the sublinear subscript list .The head of the sublinear sub-
script list is pointed to by the pointer topsubIlist. The printing of the sublinear sub-
script will be in the opposite order in which they are found in the specification. This

routine also prints the associated equation tree pointed to by the other_pointers field of

the sublinear subscript entry in the symbol table.
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5. Dimensionality propagation

5.1. The objective

The purpose of the dimensionality propagation is to assign correct dimensionality

to all the variables that are used in the assertions. The basic algorithm is as follows.

We know that all the variables that are fields of some input or output file structure has

their dimensionality correctly defined in the definition of that file. We start our dimen-

sion propagation from these fields. We go through the array graph for this purpose. We

begin with the list of variables which belongs to some input or output file. Looking a:

the array graph we know which equations has used this variable (in the right hand side

or on the left hand side). We find out the dimensionality that has been used for that

variable in that equation. We find out the difference in dimensionality in the use of

that variable in that equation and the definition (or in later stage, the established

dimensionality in earlier iteration ) of that variable. We call this difference DIMDIF.

Now we know that all the variables that has been used in that equation has the actual

dimensionality equal to the number of index used for that variable in this particular

equation plus DIMDIF. Thus we establish the actual dimensionality of each variable

in this equation and then we keep variables for which the dimensionality has been

established into a queue. In the next iteration of the same process we can start with the
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new queue of variables and propagate the dimensionality to other variables that are

used in other equationother equations. When we have established the dimensionality of

some variable, we keep track of the assertion which has caused the dimensionality of

that variable to be established. We also set a flag to indicate that the dimensionality

has been established. In later iteration if we find that we are attempting to establish the

dimensionality of some variable whose dimensionality has already been found, we

check whether these two values of the dimensionality agrees. If they do not agree we

know that the user has made some mistake in dropping the dimensionality of a vari-

able in some equation. We can not be absolutely sure exactly in which eqa:-tion the

user has made the mistake. So in case any error is found we first report to the user the

error. To help the user to find out exactly where he has made the mistake we list also

some equations. These are all the equations that has been used in establishing the

dimensionality of this variable. When listing, we go back upto the equation which is

the common root (if any found) in the tree of assertions. The tree nodes are the asser-

tions and there is an edge from each assertion whose dimensionality has been defined

by the use of a variable, to the assertion which has caused the dimensionality of that

variable to be established. If there is no common root in this tree, then we end up

with tWo input or output variables which caused us to establish different dimensionali-

ties of the same variable.
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The algorithm is divided into a few routines. The algorithm is described below.

5.2. The algorithm for dimensionality propagation.

The main routine of the EPL system calls dimprop for dimensionality propaga-

tion. No argument need to be passed to the routine. The algorithm for dimensionality

propagation can be described as follow.

Algorithm dimprop 0

{
/* Initialization */

Q <- all array grap nodes that denote a data element
which belongs to an input or output file.

level = 0;

/* Iteration */

prop 0; /* this propagates the dimensionality information

for the level 0 and sets the QP queue to the
set of data elements for whom the dimensionality

has been established */

while (QP != NULL) /* QP contains all the data elements for which

dimensionality has just been established but
dimensionality has not been propagated yet

using them. */
{
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Q <- QP;
prop 0; /* Propagate dimensionality using this nes data

elements */
I

-

Algorithm prop 0

{

QP = NULL;

For each data element "S" in the queue Q do

{

for each assertion arry_node "N" in the owner-list and dep list
of "S" do

IF

If the assertion has not been processed yet (a bit is set
always when an assertion is processed) do

node = dimsearch (N->ptr.ptp,S->ptr.str);

/* Search the equation tree for this assertion
to find out the first occurence of this
variable in that equation tree (so that
the symbol table pointer for that entry in the

-1
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equation tree matches with the symbol table

entry for the data element "S".) */

count = count-index (node); /* Count the number of index */

DIMDIF = established number of index for node "S" -
count;

dim insert (N,DIMDIF,N);

set the dim defn field of the array graph node N to node S;

I

Algorithm dim search(ASS,NODE)

/* This algorithm searches for the first occurence

of the equation tree node NODE in the equation tree

pointed to by ASS */

if (ASS == NODE)

return (ASS);

else if (ASS == NULL)

return (NULL),
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else

(

newnode = search (ass->leftchild,NODE);

if (newnode == NULL) then

search(ass->rightchild,NODE);

return (newnode);

I

Algorithm diminsert (N, DIMDIF,ASS)

if (N == NULL)
return 0;

else
{
if ( N is a variable node ) then

I
count = count-index (N);
dimn = count + DIMDIF;
if (dim_proc field of the symbol table entry for N is 0) then

I
set the dimensionality field to dimn;
set dim_proc to 1;
set dimdefn field of the array graph entry for N to ASS;



L.

163-
V -

insert the array graph node for N in QP;
I

else
I

if (dimn != the dimensionality field of the symbol table
entry for N)

dimerror (ASS, dimdefn field of array graph entry for N);
I

i

dim-insert (left child of N in equationtree, DIMDIF, ASS);
dim_insert (right child of N in equation tree, DIMDIF, ASS);

-

Algorithm count-index (node);(I
count = 0;

newnode = node->leftchild;

while (new-node !- NULL)

count ++;

newnode = new node->left child;

I
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Algorithm dimerror (thisass, prevass)

dim.list(thisass , tablel, count1);

dim list (prevass, table2, count2);

dim-cmp (table l, table2, counti, count2);

print error messages along with the assertion numbers contained in the

adjusted contents of table 1 and table2;

I

Algorithm dimcmp (table l,table2,countl,count2)

(

Find the first assertion number in tablel that is also in

table2;

set countl to include elements in tablel upto this
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assertion number,

set count2 to include elements in table2 upto this

assertion number,

I

Algorithm dimlist (ass,table,count)

I
count = 0;

defn.ptr = ass;

while (defnptr != NULL) do

if (defn.ptr points to an assertion node in the array graph)

insert defn_ptr in the table;

defn.ptr = defn_ptr->dim-defn;

count++;
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